Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38198741

RESUMO

Despite Phe being an indispensable amino acid for cats, the minimum Phe requirement for adult cats has not been empirically defined. The objective of study 1 was to determine the minimum Phe requirement, where Tyr is in excess, in adult cats using the direct amino acid oxidation (DAAO) technique. Four adult male cats were used in an 8 × 4 Latin rectangle design. Cats were adapted to a basal diet for 7 d, top dressed with Phe to meet 140% of the adequate intake (NRC, 2006. Nutrient requirements of dogs and cats. Washington, DC: Natl. Acad. Press). Cats were randomly assigned to one of eight experimental Phe diets (0.29%, 0.34%, 0.39%, 0.44%, 0.54%, 0.64%, 0.74%, and 0.84% Phe in the diet on a dry matter [DM] basis). Following 1 d of diet adaptation, individual DAAO studies were performed. During each DAAO study, cats were placed into individual indirect calorimetry chambers, and 75% of the cat's daily meal was divided into 13 equal meals supplied with a dose of L-[1-13C]-Phe. Oxidation of L-[1-13C]-Phe (F13CO2) during isotopic steady state was determined from the enrichment of 13CO2 in breath. Competing models were applied using the NLMIXED procedure in SAS to determine the effects of dietary Phe on 13CO2. The mean population minimum requirement for Phe was estimated at 0.32% DM and the upper 95% population confidence limit at 0.59% DM on an energy density of 4,200 kcal of metabolizable energy/kg DM calculated using the modified Atwater factors. In study 2, the effects of a bolus dose of Phe (44 mg kg-1 BW) on food intake, gastric emptying (GE), and macronutrient metabolism were assessed in a crossover design with 12 male cats. For food intake, cats were given Phe 15 min before 120% of their daily food was offered and food intake was measured. Treatment, day, and their interaction were evaluated using PROC GLIMMIX in SAS. Treatment did not affect any food intake parameters (P > 0.05). For GE and macronutrient metabolism, cats were placed into individual indirect calorimetry chambers, received the same bolus dose of Phe, and 15 min later received 13C-octanoic acid (5 mg kg-1 BW) on 50% of their daily food intake. Breath samples were collected to measure 13CO2. The effect of treatment was evaluated using PROC GLIMMIX in SAS. Treatment did not affect total GE (P > 0.05), but cats receiving Phe tended to delay time to peak enrichment (0.05 < P ≤ 0.10). Overall, Phe at a bolus dose of 44 mg kg-1 BW had no effect on food intake, GE, or macronutrient metabolism. Together, these results suggest that the bolus dose of Phe used may not be sufficient to elicit a GE response, but a study with a greater number of cats and greater food intake is warranted.


Two studies were conducted to evaluate 1) the minimum requirement for dietary Phe and 2) the effects of Phe on gastric emptying (GE) and food intake in adult cats. In study 1, the minimum Phe requirement was estimated using the direct amino acid oxidation (DAAO) technique. Four cats were used and received all diets in random order in a Latin rectangle design (0.29%, 0.34%, 0.39%, 0.44%, 0.54%, 0.64%, 0.74%, and 0.84% Phe in the diet on a dry matter [DM] basis). The minimum Phe requirement, in the presence of excess of Tyr, for adult cats was estimated to be 0.59% DM on an energy density of 4,200 kcal of metabolizable energy/kg DM calculated using the modified Atwater factors; higher than current recommendations set in place by the National Research Council and the American Association of Feed Control Officials. In study 2, we first validated the use of the 13C-octanoic acid breath test (13C-OABT) in cats. Then, the effects of an oral bolus of Phe on food intake, GE, and macronutrient metabolism were evaluated. Phe supplementation did not influence food intake, macronutrient metabolism, or total GE, but tended to delay the time to peak GE.


Assuntos
Doenças do Gato , Doenças do Cão , Gatos , Masculino , Animais , Cães , Aminoácidos/metabolismo , Fenilalanina/farmacologia , Fenilalanina/metabolismo , Esvaziamento Gástrico , Dieta/veterinária , Nutrientes , Ingestão de Alimentos
2.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38092464

RESUMO

There is a lack of empirical data on the dietary Met requirement, in the presence of Cys or cystine, in adult cats. Thus, the aim of this study was to determine the Met requirement, in the presence of excess Cys, in adult cats at maintenance using the indicator amino acid oxidation (IAAO) technique. Six adult neutered male cats were initially selected and started the study. Cats were adapted to the basal diet sufficient in Met (0.24% dry matter, DM) for 14 d prior to being randomly allocated to one of eight dietary levels of Met (0.10%, 0.13%, 0.17%, 0.22%, 0.27%, 0.33%, 0.38%, and 0.43% DM). Different dietary Met concentrations were achieved by supplementing the basal diet with Met solutions. Alanine was additionally included in the solutions to produce isonitrogenous and isoenergetic diets. Cats underwent a 2-d adaptation period to each experimental diet prior to each IAAO study day. On IAAO study days, 13 meals were offered corresponding to 75% of each cat's daily food allowance. The remaining 25% of their daily food intake was offered after each IAAO study. A bolus dose of NaH13CO3 (0.44 mg kg-1) and l-[1-13C]-phenylalanine (13C-Phe; 4.8 mg kg-1) were provided in fifth and sixth meals, respectively, followed by a constant dose of 13C-Phe (1.04 mg kg-1) in the next meals. Breath samples were collected and total production of 13CO2 was measured every 25 min through respiration calorimetry chambers. Steady state of 13CO2 achieved over at least three breath collections was used to calculate oxidation of 13C-Phe (F13CO2). Competing models were applied using the NLMIXED procedure in SAS to determine the effects of dietary Met on 13CO2. Two cats were removed from the study as they did not eat all meals, which is required to achieve isotopic steady. A breakpoint for the mean Met requirement, with excess of Cys, was identified at 0.24% DM (22.63 mg kg-1) with an upper 95% confidence limit of 0.40% DM (37.71 mg·kg-1), on an energy density of 4,164 kcal of metabolizable energy/kg DM calculated using the modified Atwater factors. The estimated Met requirement, in the presence of excess of Cys, is higher than the current recommendations proposed by the National Research Council's Nutrient Requirement of Dogs and Cats, the Association of American Feed Control Officials, and the European Pet Food Industry Federation.


The objective of this study was to determine the minimum Met requirement, when Cys was provided in excess, of adult cats using a highly sensitive and noninvasive technique, the indicator amino acid oxidation (IAAO). Six adult cats were fed experimental diets with varying levels of methionine (0.10%, 0.13%, 0.17%, 0.22%, 0.27%, 0.33%, 0.38%, and 0.43% on a dry matter [DM] basis) for 2 d prior to each IAAO study day. Although not all cats completed the study, a breakpoint was still defined in the statistical models applied, resulting in an estimated minimum Met requirement of 0.40% DM (37.71 mg kg−1), on an energy density of 4,164 kcal of metabolizable energy/kg DM calculated using the modified Atwater factors. The Met requirement, in the presence of excess of Cys, estimated in our study is higher than the current recommendations proposed by the National Research Council's Nutrient Requirement of Dogs and Cats, the Association of American Feed Control Officials, and the European Pet Food Industry Federation.


Assuntos
Doenças do Gato , Doenças do Cão , Masculino , Gatos , Animais , Cães , Aminoácidos/metabolismo , Metionina/metabolismo , Fenilalanina/metabolismo , Oxirredução , Racemetionina/metabolismo , Dieta/veterinária , Necessidades Nutricionais
3.
Front Vet Sci ; 10: 1198175, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37565085

RESUMO

Introduction: Due to the involvement in one-carbon metabolism and lipid mobilization, choline and L-carnitine supplementation have been recommended to minimize hepatic lipid accumulation and support fat oxidation, respectively. This study investigated the lipotropic benefits of choline or L-carnitine supplementation in lean and obese cats maintaining body weight (BW). Methods: Lean [n = 9; body condition score (BCS): 4-5/9] and obese (n = 9; BCS: 8-9/9) adult male neutered colony cats were used in a replicated 3 x 3 complete Latin square design. Treatments included choline (378 mg/kg BW0.67), L-carnitine (200 mg/kg BW) and control (no supplement). Treatments were supplemented to the food for 6 weeks each, with a 2-week washout between treatments. Cats were fed once daily to maintenance energy requirements, and BW and BCS were assessed weekly. Fasted blood collection, indirect calorimetry, and dual-energy X-ray absorptiometry occurred at the end of each treatment period. Serum was analyzed for cholesterol (CHOL), high-density lipoprotein CHOL (HDL-C), triglycerides (TAG), non-esterified fatty acids (NEFA), glucose, creatinine (CREAT), urea, alkaline phosphatase (ALP) and alanine aminotransferase (ALT). Very low-density lipoprotein CHOL (VLDL) and low-density lipoprotein CHOL (LDL-C) were calculated. Data were analyzed using proc GLIMMIX, with group and period as random effects, and treatment, body condition, and their interaction as fixed effects, followed by a Tukey's post-hoc test when significance occurred. Results: Cats supplemented choline had lower food intake (P = 0.025). Treatment did not change BW, BCS and body composition (P > 0.05). Obese cats had greater ALP, TAG, and VLDL, and lower HDL-C compared to lean cats (P < 0.05). Choline resulted in greater CHOL, HDL-C, LDL-C and ALT (P < 0.05). L-carnitine resulted in lower CREAT (P = 0.010). Following the post-hoc test, differences between treatment means were not present for ALP (P = 0.042). No differences were found for glucose, urea or NEFA (P > 0.05). Obese cats had a lower fed respiratory quotient (RQ), regardless of treatment (P = 0.045). Treatment did not affect fed or fasted RQ and energy expenditure (P > 0.05). Discussion: Choline appeared to increase circulating lipid and lipoprotein concentrations regardless of body condition, likely through enhanced lipid mobilization and hepatic elimination. Neither dietary choline or L-carnitine altered body composition or energy metabolism in the lean or obese cats, as compared to control.

4.
J Nutr ; 153(5): 1461-1475, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36972833

RESUMO

BACKGROUND: Pulses are an attractive alternative protein source for all mammals; however, recent reports suggest that these ingredients may be related to developing dilated cardiomyopathy in dogs. OBJECTIVES: The primary objective of this study was to quantify the effects of dietary pulse intake by adult dogs on cardiac function using echocardiographic measurements and cardiac biomarkers N-terminal pro-B-type natriuretic peptide and cardiac troponin I (cTnI). Second, to investigate the effects of pulse consumption on plasma sulfur amino acid (SAA) concentrations as pulses are generally low in SAA and may limit taurine synthesis. Last, to assess the general safety and efficacy of feeding pulse-containing diets on canine body composition and hematological and biochemical indices. METHODS: Twenty-eight privately-owned domestic Siberian Huskies (13 females; 4 intact, and 15 males; 6 intact) with a mean age of 5.3 ± 2.8 y (± SD) were randomly assigned to 1 of 4 dietary treatments (n = 7/treatment), with equal micronutrient supplementation and increasing whole pulse ingredient inclusion (0%, 15%, 30%, and 45%) with pea starch used to balance protein and energy. RESULTS: After 20 wks of feeding, there were no differences (P > 0.05) in echocardiographic parameters, N-terminal pro-B-type natriuretic peptide, and cTnI concentrations among treatments or across time within treatment (P > 0.05), indicating no differences in cardiac function among treatments. Concentrations of cTnI remained below the safe upper limit of 0.2 ng/mL for all dogs. Plasma SAA status, body composition, and hematological and biochemical indices were similar among treatments and over time (P > 0.05). CONCLUSIONS: The results from this study suggest that increasing the inclusion of pulses up to 45% with the removal of grains and equal micronutrient supplementation does not impact cardiac function concurrent with dilated cardiomyopathy, body composition, or SAA status and is safe for healthy adult dogs to consume when fed for 20 wks.


Assuntos
Aminoácidos Sulfúricos , Cardiomiopatia Dilatada , Animais , Cães , Feminino , Masculino , Ração Animal/análise , Cardiomiopatia Dilatada/veterinária , Galinhas/metabolismo , Dieta/veterinária , Mamíferos/metabolismo , Micronutrientes , Peptídeo Natriurético Encefálico , Pisum sativum , Amido , Taurina/metabolismo
5.
PLoS One ; 18(1): e0280734, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36689425

RESUMO

Choline participates in methyl group metabolism and has been recognized for its roles in lipid metabolism, hepatic health and muscle function in various species. Data regarding the impacts of choline on feline metabolic pathways are scarce. The present study investigated how choline intake affects the metabolomic profile of overweight cats fed at maintenance energy. Overweight (n = 14; body condition score:6-8/9) male adult cats were supplemented with five doses of choline in a 5x5 Latin Square design. Cats received a daily dose of choline on extruded food (3620 mg choline/kg diet) for three weeks at maintenance energy requirements (130 kcal/kgBW0.4). Doses were based on body weight (BW) and the daily recommended allowance (RA) for choline for adult cats (63 mg/kg BW0.67). Treatment groups included: Control (no additional choline, 1.2 x NRC RA, 77 mg/kg BW0.67), 2 x NRC RA (126 mg/kg BW0.67), 4 x NRC RA (252 mg/kg BW0.67), 6 x RA (378 mg/kg BW0.67), and 8 x NRC RA (504 mg/kg BW0.67). Serum was collected after an overnight fast at the end of each treatment period and analyzed for metabolomic parameters through nuclear magnetic resonance (NMR) spectroscopy and direct infusion mass spectrometry (DI-MS). Data were analyzed using GLIMMIX, with group and period as random effects, and dose as the fixed effect. Choline up to 8 x NRC RA was well-tolerated. Choline at 6 and 8 x NRC RA resulted in greater concentrations of amino acids and one-carbon metabolites (P < 0.05) betaine, dimethylglycine and methionine. Choline at 6 x NRC RA also resulted in greater phosphatidylcholine and sphingomyelin concentrations (P < 0.05). Supplemental dietary choline may be beneficial for maintaining hepatic health in overweight cats, as it may increase hepatic fat mobilization and methyl donor status. Choline may also improve lean muscle mass in cats. More research is needed to quantify how choline impacts body composition.


Assuntos
Colina , Sobrepeso , Gatos , Animais , Masculino , Colina/metabolismo , Sobrepeso/veterinária , Dieta/veterinária , Betaína/metabolismo , Peso Corporal , Ração Animal/análise
6.
Br J Nutr ; 130(3): 369-388, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-36305498

RESUMO

Choline is beneficial for energy metabolism and growth in various species. Choline may work similarly in kittens at risk of obesity. Direct infusion MS (Di-MS) and NMR spectroscopy were used to investigate the metabolomic signatures of kittens supplemented with or without additional dietary choline for 12 weeks. Fifteen intact male kittens consumed a base diet (3310 mg choline/kg DM) to their daily metabolisable energy requirement (DER) over an 11-week acclimation. Kittens were gonadectomised and assigned, based on body weight, to the base diet (CONTROL, n 7) or the base diet with 300 mg/kgBW0·75 additional choline as choline chloride (CHOLINE, n 8) and offered three times their individual energy requirement divided into three meals. At weeks -1 and 12, fasted blood was sampled and serum analysed for 130 metabolites via Di-MS and fifty-one metabolites via NMR spectroscopy. Changes in fasted metabolites were assessed using a repeated-measures GLIMMIX procedure with time and group as fixed effects, and time as a repeated measure. Metabolites of one-carbon metabolism and lipids increased, and medium-chain acyl carnitines decreased from week -1 to 12 for CHOLINE (P < 0·05), but not CONTROL (P > 0·05). Increases in amino acid, biogenic amine and organic compound concentrations were observed in both groups (P < 0·05). The results suggest impacts of dietary choline at greater intakes than currently recommended on one-carbon metabolism and fatty acid oxidation, and these may promote healthy growth in post-gonadectomy kittens.


Assuntos
Colina , Dieta , Animais , Feminino , Masculino , Gatos , Colina/metabolismo , Suplementos Nutricionais/análise , Castração , Espectroscopia de Ressonância Magnética , Carbono
7.
J Anim Sci ; 100(11)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36029013

RESUMO

Yeast-derived ß-glucans impact immunity, though their effects on gut permeability and inflammation are less understood. Most research has investigated other components of the yeast cell wall, such as the prebiotic mannan- and fructo-oligosaccharides. The objective of this study was to assess the effects of feeding a concentrated yeast product on markers of inflammation (serum amyloid A [SAA] and haptoglobin [Hp]) and oxidative status (malondialdehyde [MDA]), fecal products of fermentation, and gut permeability. Nineteen privately owned domestic Siberian huskies, and one Alaskan husky (9 females: 5 intact, 4 spayed; 11 males: 3 intact, 8 neutered), with an average age of 4.8 ± 2.6 yr and body weight (BW) of 25.6 ± 4.1 kg, were used in this study. Dogs were blocked and randomly allocated to one of two diet groups. Ten dogs received a dry extruded diet. The other 10 received the same diet top dressed with yeast for a daily ß-glucan dose of 7 mg/kg BW for 10 wk. Fecal collection, for evaluation of fecal metabolites, and scoring occurred weekly. Gut permeability was assessed using the chromium-labeled ethylenediamine tetra-acetic acid (Cr-EDTA) and iohexol markers prior to the initiation of dietary treatment and after 10 wk of treatment. Blood samples were collected premarker administration and 0.5, 1, 2, 3, 4, 5, and 6 h postadministration. Fasting concentrations of SAA, Hp, and MDA were measured on weeks -1, 2, 4, and 8. Incremental area under the curve (I-AUC) was calculated for serum iohexol and Cr-EDTA concentrations. All data were analyzed using PROC GLIMMIX of SAS with dog as random effect, and week as fixed effect and repeated measure. Dogs receiving treatment tended to have decreased I-AUC of Iohexol (P = 0.10) and Cr-EDTA (P = 0.06) between baseline and cessation of treatment compared to the change over time in I-AUC for control (Ctl) dogs. Treatment dogs had lower Hp concentrations (P ≤ 0.05) than Ctl. There were no differences between treatments for SAA and MDA concentrations (P > 0.05). Fecal arabinose concentrations were greater in treatment (Trt) dogs (P ≤ 0.05) compared to Ctl, though no other fecal metabolites were affected by treatment. There was no difference in the relative frequency of defecations scored at any fecal score between Trt and Ctl dogs, and mean score did not differ between groups (P > 0.10). These data suggest that concentrated brewer's yeast may have the potential to reduce gut permeability without impacting inflammatory status and markers of health in adult dogs.


This study evaluated the effects of concentrated brewer's yeast on gut health in dogs. Nineteen Siberian Huskies and one Alaskan husky were blocked and randomly allocated to one of two groups. Treatment dogs received a yeast supplement for 10 wk, while control dogs received no supplement. Dogs were administered two markers to assess intestinal permeability prior to start of treatment and following 10 wk of treatment. Blood samples were collected and analyzed for markers of inflammatory status (serum amyloid A [SAA] and Haptoglobin [Hp]) and oxidative status (serum malondialdehyde [MDA]). Fecal samples were collected weekly to assess fecal score as well as fecal metabolite concentrations. Intestinal permeability was reduced in treatment dogs following treatment, and no change was observed in the control group. Treatment dogs had lower Hp concentrations than control (Ctl), but there were no differences between treatments for SAA and MDA. Fecal arabinose concentrations were significantly greater in the treatment group when compared to control. There were no differences in the relative frequency of defecations scored at any fecal score between treatment and Ctl dogs, nor did mean score differ between the groups. This study suggests that concentrated brewer's yeast may reduce gut permeability and inflammation without detrimentally impacting markers of health in adult dogs.


Assuntos
Doenças do Cão , Saccharomyces cerevisiae , Masculino , Feminino , Cães , Animais , Ração Animal/análise , Iohexol , Ácido Edético , Dieta/veterinária , Inflamação/veterinária , Permeabilidade
8.
J Anim Sci ; 100(7)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35641141

RESUMO

Choline is an essential nutrient linked to hepatic lipid metabolism in many animal species, including cats. The current study investigated the serum lipid profiles, serum liver enzymes, respiratory quotients, and energy expenditures of overweight cats fed maintenance diets, in response to graded doses of supplemental dietary choline. Overweight (body condition score [BCS]: ≥6/9) adult male neutered cats (n = 14) were supplemented with five choline chloride doses for 3-wk periods, in a 5 × 5 Latin square design. Doses were based on individual body weight (BW) and the daily recommended allowance (RA) for choline (63 mg/kg BW0.67) according to the National Research Council. Doses were control (no additional choline: 1.2 × RA, 77 mg/kg BW0.67), 2 × RA (126 mg/kg BW0.67), 4 × RA (252 mg/kg BW0.67), 6 × RA (378 mg/kg BW0.67), and 8 × RA (504 mg/kg BW0.67). Choline was top-dressed over the commercial extruded cat food (3,620 mg choline/kg diet), fed once a day at maintenance energy requirements (130 kcal/kgBW0.4). Body weight and BCS were assessed weekly. Fasted blood samples were taken and indirect calorimetry was performed at the end of each 3-wk period. Serum was analyzed for cholesterol, high-density lipoprotein cholesterol (HDL-C), triglycerides, non-esterified fatty acids, glucose, creatinine, blood urea nitrogen (BUN), alkaline phosphatase (ALP), and alanine aminotransferase. Very low-density lipoprotein cholesterol (VLDL) and low-density lipoprotein cholesterol were calculated. Data were analyzed via SAS using proc GLIMMIX, with group and period as the random effects, and treatment as the fixed effect. Statistical significance was considered at P < 0.05. Body weight and BCS did not change (P > 0.05). Serum cholesterol, HDL-C, triglycerides, and VLDL increased with 6 × RA (P < 0.05). Serum ALP decreased with 8 × RA (P = 0.004). Choline at 4 × and 6 × RA decreased serum BUN (P = 0.006). Fed or fasted respiratory quotient and energy expenditure did not differ among dietary choline doses (P > 0.05). These results suggest that dietary choline supplementation at 6 × RA may increase hepatic fat mobilization through increased lipoprotein transport and beneficially support hepatic health in overweight cats. Future studies that combine these results with existing knowledge of feline weight loss and hepatic lipidosis are warranted.


Choline is an essential nutrient important for lipid metabolism in the liver of many mammals. In the present study, fourteen overweight cats had their commercial extruded cat food top-dressed with different amounts of choline chloride supplement. The amounts of choline were based on the individual body weights and the published recommended allowance (RA) for dietary choline intake in adult cats. The choline treatments were control (no additional choline added, 1.2 × RA), 2 × RA, 4 × RA, 6 × RA, and 8 × RA. The cats were separated into five groups. Each group received the choline treatments once daily for 3 wk per treatment. Choline at 6 × RA increased serum cholesterol, triglycerides, and lipoproteins. There were no significant differences in respiratory quotient or energy expenditure with choline intake. The results of this study suggest that choline at 6 × RA increases the transport of lipids from the liver. This may be beneficial in supporting liver health in overweight cats. Future studies should investigate supplementing choline to cats undergoing weight loss and those at risk of developing fatty liver.


Assuntos
Doenças do Gato , Sobrepeso , Animais , Peso Corporal , Gatos , Colesterol , Colina/farmacologia , Dieta/veterinária , Metabolismo Energético , Lipoproteínas LDL , Masculino , Sobrepeso/veterinária , Triglicerídeos
9.
PLoS One ; 17(3): e0264321, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35298484

RESUMO

Gonadectomy is a major risk factor for feline obesity. The lipotropic effects of choline have demonstrated benefits for growth and carcass composition in livestock. The consumption of supplemental choline on body weight (BW), body composition, lipid metabolism, energy expenditure (EE), and serum satiety hormones were evaluated in 15 gonadectomized male kittens. Kittens were offered a base diet formulated for growth (3310mg choline/kg dry matter [DM]) to daily energy requirements (DER) over an 11-week acclimation. Post-gonadectomy, kittens were assigned to a base diet (CONTROL, n = 7) or choline group (base diet with additional choline at 300mg/kg BW0.75 as a top dress) (CHOLINE, n = 8). For 12-weeks post-neuter, kittens were offered three times their DER over three meals to mimic ad libitum feeding. At week -1 and 12, body composition was assessed using dual energy x-ray absorptiometry (DXA), 24-hour indirect calorimetry was performed for EE and respiratory quotients (RQ), and fasted serum samples were analyzed for lipid compounds and satiety hormones. Daily food intake (FI) and weekly BW were measured. Data was analyzed as a repeated measures of variance (ANCOVA) using the GLIMMIX procedure with time and group as fixed effects. CHOLINE had lower mean daily FI and lower rates of BW accretion (P<0.05) in contrast to CONTROL. All absolute body composition data increased over time for both groups, with lower increases in total tissue mass (P = 0.031) and fat mass (P = 0.005) in CHOLINE. Serum satiety hormones and lipid compounds did not differ (P>0.05) between groups, but both groups experienced a decrease in low-density lipoproteins and increase in high-density lipoproteins (P<0.05). Primary substrate utilization showed lipid use when fasted and use of protein or mixed macronutrients in the fed state. Fed state EE decreased post-gonadectomy (P = 0.004), however, CHOLINE did not affect total EE or RQ. These results suggest that supplemental dietary choline reduces FI, BW, and fat mass and may help to reduce the propensity of weight gain and subsequent obesity in gonadectomized feline populations.


Assuntos
Composição Corporal , Colina , Animais , Peso Corporal , Gatos , Dieta/veterinária , Ingestão de Alimentos , Ingestão de Energia , Metabolismo Energético , Feminino , Hormônios , Lipídeos , Masculino , Obesidade
10.
Animals (Basel) ; 11(8)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34438654

RESUMO

Obesity is a health concern for domestic cats. Obesity and severe energy restriction predispose cats to feline hepatic lipidosis. As choline is linked to lipid metabolism, we hypothesized that dietary choline supplementation would assist in reducing hepatic fat through increased lipoprotein transport and fatty acid oxidation. Twelve obese cats (body condition score [BCS] ≥ 8/9) were split into two groups. Cats were fed a control (n = 6; 4587 mg choline/kg dry matter [DM]) or a high choline diet (n = 6; 18,957 mg choline/kg DM) for 5 weeks, for adult maintenance. On days 0 and 35, fasted blood was collected, and the body composition was assessed. Serum lipoprotein and biochemistry profiles, plasma amino acids and plasma acylcarnitines were analyzed. The body weight, BCS and body composition were unaffected (p > 0.05). Choline increased the serum cholesterol, triacylglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol and plasma methionine (p < 0.05) and decreased the serum blood urea nitrogen and alkaline phosphatase (p < 0.05). Choline also reduced the plasma acylcarnitine to free carnitine ratio (p = 0.006). Choline may assist in eliminating hepatic fat through increased fat mobilization and enhanced methionine recycling.

11.
J Anim Sci ; 99(9)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34333630

RESUMO

Grain-based ingredients are replaced in part by pulse ingredients in grain-free pet foods. Pulse ingredients are lower in methionine and cysteine, amino acid (AA) precursors to taurine synthesis in dogs. Although recent work has investigated plasma and whole blood taurine concentrations when feeding grain-free diets, supplementation of a grain-free diet with various nutrients involved in the biosynthesis of taurine has not been evaluated. This study aimed to investigate the effects of supplementing a complete grain-free dry dog food with either methionine (MET), taurine (TAU), or methyl donors (choline) and methyl receivers (creatine and carnitine; CCC) on postprandial AA concentrations. Eight healthy Beagle dogs were fed one of the three treatments or the control grain-free diet (CON) for 7 d in a 4 × 4 Latin square design. On day 7, cephalic catheters were placed and one fasted sample (0 min) and a series of nine post-meal blood samples were collected at 15, 30, 60, 90, 120, 180, 240, 300, and 360 min. Data were analyzed as repeated measures using the PROC GLIMMIX function in SAS (Version 9.4). Dogs fed MET had greater plasma and whole blood methionine concentrations from 30 to 360 min after a meal (P < 0.0001) and greater plasma homocysteine concentrations from 60 to 360 min after a meal (P < 0.0001) compared with dogs fed CON, TAU, and CCC. Dogs fed TAU had greater plasma taurine concentrations over time compared with dogs fed CON (P = 0.02) but were not different than dogs fed MET and CCC (P > 0.05). In addition, most AAs remained significantly elevated at 6 h post-meal compared with fasted samples across all treatments. Supplementation of creatine, carnitine, and choline in grain-free diets may play a role in sparing the methionine requirement without increasing homocysteine concentrations. Supplementing these nutrients could also aid in the treatment of disease that causes metabolic or oxidative stress, including cardiac disease in dogs, but future research is required.


Assuntos
Metionina , Taurina , Animais , Dieta/veterinária , Suplementos Nutricionais , Cães , Grão Comestível , Homocisteína
12.
Can Vet J ; 62(4): 374-378, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33867549

RESUMO

Thiamine is an essential dietary nutrient in cats; however, studies on the stability of thiamine in pet food are limited. The objective of this study was to analyze thiamine concentrations in commercial feline extruded diets over time at room and freezing temperatures. Twelve diets were split in half and thiamine concentrations were assessed using fluorometry. One half of each diet was then stored at room temperature (24°C) and the other half was frozen (-20°C). Subsamples were analyzed at 2 other time points at 6-month intervals up to 1 year. Data were assessed using a mixed procedure (2-factor factorial model with factors time and treatment). Based on F-tests, thiamine concentrations decreased over time (P = 0.001), with no treatment*time interaction (P = 0.9534). In conclusion, regardless of treatment, thiamine degraded at a similar rate over time.


Dans les aliments extrudés pour félins, la thiamine s'est dégradée à un taux similaire lorsqu'elle est conservée à −20 °C par rapport à la température ambiante. La thiamine est un nutriment alimentaire essentiel chez les chats; cependant, les études sur la stabilité de la thiamine dans les aliments pour animaux de compagnie sont limitées. L'objectif de la présente étude était d'analyser les concentrations de thiamine dans les aliments extrudés commerciaux pour félins au fil du temps à des températures ambiantes et de congélation. Douze aliments ont été divisés en deux et les concentrations de thiamine ont été évaluées par fluorométrie. La moitié de chaque aliment a ensuite été conservée à température ambiante (24 °C) et l'autre moitié a été congelée (−20 °C). Les sous-échantillons ont été analysés à deux moments supplémentaires à des intervalles de 6 mois jusqu'à 1 an. Les données ont été évaluées à l'aide d'une procédure mixte (modèle factoriel à deux facteurs avec les facteurs temps et traitement). Les tests F globaux ont montré une diminution de la concentration de thiamine au fil du temps (P = 0,001) et aucune interaction entre le traitement et le temps (P = 0,9534). En conclusion, quel que soit le traitement, la thiamine s'est dégradée à un rythme similaire dans le temps.(Traduit par Dr Serge Messier).


Assuntos
Ração Animal , Tiamina , Ração Animal/análise , Animais , Gatos , Dieta/veterinária , Temperatura
13.
Vet Comp Oncol ; 18(4): 706-717, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32304175

RESUMO

This survey aimed to investigate and compare diet type and supplement use between dogs (Canis lupus familiaris, L.) with cancer and a population of owner-reported healthy dogs and to assess the sources of information dog owners consult. Respondents were mainly from English-speaking countries. Dogs were considered healthy (N = 213) if owners reported them to be in good health. Dogs were included in the cancer group (N = 132) if the owner reported that their dog had been diagnosed with cancer. An online survey was distributed to clients presenting to a tertiary oncology service, clients presenting to a local primary care veterinary practice, and through social media. Owners of dogs with cancer spent more time researching pet health (P < .001), pet nutrition (P < .01) and nutritional supplements (P < .001) than owners of healthy dogs. While veterinarians were most commonly reported to be an information source for both groups, owners of healthy dogs more likely consulted pet stores and owners of dogs with cancer tended more to social media groups and blogs. Healthy dogs were more likely fed commercial dry food (P < .001), whereas homemade cooked (P < .001) and raw diets (P < .05) were more prevalent among dogs with cancer. Supplement use, especially cannabidiol products, mushroom extracts or turmeric/curcumin, was also more common for this group (P < .001). Alternative diets and supplements were more popular among owners of dogs with cancer compared to owners of healthy dogs. These findings highlight the need for nutritional counselling and education of pet owners regarding nutrition-related topics, especially when their dog is diagnosed with cancer.


Assuntos
Dieta/veterinária , Suplementos Nutricionais , Doenças do Cão/terapia , Conhecimentos, Atitudes e Prática em Saúde , Comportamento de Busca de Informação , Neoplasias/veterinária , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Ração Animal , Animais , Dieta/métodos , Cães , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/terapia , Propriedade , Inquéritos e Questionários , Adulto Jovem
14.
Can Vet J ; 59(2): 174-177, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29386679

RESUMO

Concentrations of calcium, phosphorus, and vitamin D in similar foods were compared over 4 international food databases and results demonstrated no differences (P > 0.05) among the values from the databases. Therefore, the use of different food databases for homemade dog and cat diet formulation should not affect the final diet nutrient density prediction for these key nutrients.


Le calcium, le phosphore et la vitamine D dans les aliments pour humains dans quatre bases de données alimentaires ne sont pas différents. Les concentrations de calcium, de phosphore et de vitamine D ont été comparées dans quatre bases de données alimentaires internationales et les résultats n'ont pas montré de différence (P > 0,05) entre les aliments similaires. Par conséquent, l'utilisation de bases de données alimentaires différentes pour la conception d'un régime alimentaire maison pour chiens et chats, ne devrait pas affecter la prédiction de la densité nutritionnelle du régime alimentaire final pour ces nutriments cléfs.(Traduit par les auteurs).


Assuntos
Cálcio/química , Bases de Dados Factuais , Análise de Alimentos , Fósforo/química , Vitamina D/química , Humanos
15.
J Nutr Biochem ; 26(11): 1221-34, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26242921

RESUMO

Choline plays a critical role in systemic lipid metabolism and hepatic function. Here we conducted a series of experiments to investigate the effect of choline supplementation on metabolically altered Pcyt2(+/-) mice. In Pcyt2(+/-) mice, the membrane phosphatidylethanolamine (PE) turnover is reduced and the formation of fatty acids (FA) and triglycerides (TAG) increased, resulting in hypertriglyceridemia, liver steatosis and obesity. One month of choline supplementation reduced the incorporation of FA into TAG and facilitated TAG degradation in Pcyt2(+/-) adipocytes, plasma and liver. Choline particularly stimulated adipocyte and liver TAG lipolysis by specific lipases (ATGL, LPL and HSL) and inhibited TAG formation by DGAT1 and DGAT2. Choline also activated the liver AMPK and mitochondrial FA oxidation gene PPARα and reduced the FA synthesis genes SREBP1, SCD1 and FAS. Liver (HPLC) and plasma (tandem mass spectroscopy and (1)H-NMR) metabolite profiling established that Pcyt2(+/-) mice have reduced membrane cholesterol/sphingomyelin ratio and the homocysteine/methionine cycle that were improved by choline supplementation. These data suggest that supplementary choline is beneficial for restoring FA and TAG homeostasis under conditions of obesity caused by impaired PE synthesis.


Assuntos
Colina/farmacologia , Fígado/efeitos dos fármacos , RNA Nucleotidiltransferases/deficiência , Proteínas Quinases Ativadas por AMP/metabolismo , Acilação , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Carnitina/análogos & derivados , Suplementos Nutricionais , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/metabolismo , Camundongos Mutantes , Fosfatidilcolinas/metabolismo , Fosfatidilserinas/metabolismo , RNA Nucleotidiltransferases/genética , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Aumento de Peso/efeitos dos fármacos
16.
BMC Vet Res ; 10: 104, 2014 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-24885092

RESUMO

BACKGROUND: Oxidative stress and inflammation can be altered by dietary factors in various species. However, little data are available in true carnivorous species such as domestic cats. As numerous anti-inflammatory and anti-oxidative additives become available and might be of use in cats with chronic low-grade inflammatory diseases, the current study aimed to develop a model of diet-induced inflammation by use of two opposite diets. It was hypothesized that a high fat diet enhanced in n-6 PUFA and with lower concentrations of antioxidants would evoke inflammation and oxidative stress in domestic cats. RESULTS: Sixteen healthy adult cats were allocated to two groups. One group received a moderate fat diet, containing pork lard and salmon oil (AA:(EPA + DHA) ratio 0.19) (MFn-3), while the other group was fed a high fat diet, containing pork lard and chicken fat (AA:(EPA + DHA) ratio 2.06) (HFn-6) for 12 weeks. Prior to and 2, 4, 6, 8, 10 and 12 weeks after starting the testing period, blood samples were collected. Erythrocytic fatty acid profile showed clear alterations in accordance to the dietary fatty acid profile. Serum thiobarbituric acid reactive substances was higher when fed MFn-3 compared to the HFn-6, suggesting augmented oxidative stress. This was associated with a reduced serum vitamin E status, as serum α-tocopherol concentrations were lower with MFn-3, even with higher dietary levels of vitamin E. Serum cytokine and serum amyloid A concentrations were not influenced by diet. CONCLUSION: These results point towards a resistance of cats to develop dietary fat-induced inflammation, but also suggest a high susceptibility to oxidative stress when fed a fish oil-supplemented diet even with moderate fat level and additional vitamin E.


Assuntos
Gorduras na Dieta/efeitos adversos , Ácidos Graxos Ômega-6/farmacologia , Inflamação/veterinária , Estresse Oxidativo/efeitos dos fármacos , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Biomarcadores , Gatos , Citocinas/genética , Citocinas/metabolismo , Dieta/veterinária , Ácidos Graxos Ômega-6/administração & dosagem , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/dietoterapia , Masculino
17.
Br J Nutr ; 109(6): 1022-30, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-22877608

RESUMO

The present study evaluated the potential of affecting amino acid metabolism through intestinal fermentation in domestic cats, using dietary guar gum as a model. Apparent protein digestibility, plasma fermentation metabolites, faecal fermentation end products and fermentation kinetics (exhaled breath hydrogen concentrations) were evaluated. Ten cats were randomly assigned to either guar gum- or cellulose-supplemented diets, that were fed in two periods of 5 weeks in a crossover design. No treatment effect was seen on fermentation kinetics. The apparent protein digestibility (P= 0.07) tended to be lower in guar gum-supplemented cats. As a consequence of impaired small-intestinal protein digestion and amino acid absorption, fermentation of these molecules in the large intestine was stimulated. Amino acid fermentation has been shown to produce high concentrations of acetic and butyric acids. Therefore, no treatment effect on faecal propionic acid or plasma propionylcarnitine was observed in the present study. The ratio of faecal butyric acid:total SCFA tended to be higher in guar gum-supplemented cats (P= 0.05). The majority of large-intestinal butyric acid is absorbed by colonocytes and metabolised to 3-hydroxy-butyrylcoenzyme A, which is then absorbed into the bloodstream. This metabolite was analysed in plasma as 3-hydroxy-butyrylcarnitine, which was higher (P= 0.02) in guar gum-supplemented cats. In all probability, the high viscosity of the guar gum supplement was responsible for the impaired protein digestion and amino acid absorption. Further research is warranted to investigate whether partially hydrolysed guar gum is useful to potentiate the desirable in vivo effects of this fibre supplement.


Assuntos
Aminoácidos/metabolismo , Gatos/metabolismo , Dieta/veterinária , Fibras na Dieta/administração & dosagem , Fermentação/efeitos dos fármacos , Galactanos/administração & dosagem , Mananas/administração & dosagem , Gomas Vegetais/administração & dosagem , Animais , Peso Corporal , Ácido Butírico/análise , Ácido Butírico/metabolismo , Carnitina/análogos & derivados , Carnitina/sangue , Celulose/administração & dosagem , Estudos Cross-Over , Proteínas Alimentares/metabolismo , Digestão/efeitos dos fármacos , Ingestão de Energia , Ácidos Graxos Voláteis/análise , Fezes/química , Feminino , Galactanos/química , Mucosa Intestinal/metabolismo , Masculino , Mananas/química , Gomas Vegetais/química , Viscosidade
18.
Br J Nutr ; 104(7): 972-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20420757

RESUMO

N balance and postprandial acylcarnitine profile following intestinal fermentation of oligofructose and inulin were investigated in healthy cats. Two diets were tested in a crossover design: a commercial high-protein cat food supplemented with 4 % DM oligofructose and inulin (spectrum: degree of polymerisation (DP) 2-10: 60 (SE 5) % DM; DP>10: 28 (SE 5) % DM) as high-fermentable fibre (HFF) diet, and the same commercial diet supplemented with 4 % DM cellulose as low-fermentable fibre diet. Eight adult cats were randomly allotted to each of the two diets at intervals of 4 weeks. At the end of each testing period, faeces and urine were collected over a 5-d period, and blood samples were obtained before and at the selected time points postprandially. No differences were found for N intake, N digestibility and faecal N excretion, whereas urinary N excretion was lower when the HFF diet was fed (P = 0.044). N balance was positive in all the cats, and tended to be increased when the HFF diet was fed (P = 0.079). Propionylcarnitine concentrations (P = 0.015) and their area under the curve (AUC) (P = 0.013) were increased when the HFF diet was fed, revealing a more pronounced production and absorption of propionate. Yet, methylmalonylcarnitine concentrations and concurrent AUC were not elevated when the HFF diet was fed, indicating reduced amino acid catabolism. 3-Hydroxy-3-methylglutarylcarnitine concentrations (P = 0.026) and their AUC (P = 0.028) were also reduced when the HFF diet was fed, implying diminished use of branched-chain amino acids as well. In healthy cats, oligofructose and inulin added to a high-protein diet were suggested to reduce postprandial amino acid-induced gluconeogenesis by substitution with propionate.


Assuntos
Aminoácidos/metabolismo , Carnitina/metabolismo , Proteínas Alimentares/metabolismo , Mucosa Intestinal/metabolismo , Inulina/farmacologia , Nitrogênio/metabolismo , Oligossacarídeos/farmacologia , Animais , Área Sob a Curva , Bactérias/metabolismo , Carnitina/análogos & derivados , Gatos , Estudos Cross-Over , Proteínas Alimentares/administração & dosagem , Suplementos Nutricionais , Feminino , Fermentação , Gluconeogênese , Intestinos/microbiologia , Inulina/metabolismo , Masculino , Oligossacarídeos/metabolismo , Período Pós-Prandial , Prebióticos , Propionatos/metabolismo
19.
Br J Nutr ; 102(5): 694-702, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19267948

RESUMO

The effect of dietary oligofructose and inulin supplementation on glucose metabolism in obese and non-obese cats was assessed. Two diets were tested in a crossover design; a control diet high in protein (46 % on DM basis), moderate in fat (15 %), low in carbohydrates (27 %), but no soluble fibres added; and a prebiotic diet, with 2.5 % of a mixture of oligofructose and inulin added to the control diet. Eight non-obese and eight obese cats were allotted to each of two diets in random order at intervals of 4 weeks. At the end of each testing period, intravenous glucose tolerance tests were performed. Area under the glucose curve (AUCgluc) was increased (P = 0.022) and the second insulin peak was delayed (P = 0.009) in obese compared to non-obese cats. Diets did not affect fasting plasma glucose concentrations, blood glucose response at each glucose time-point after glucose administration, AUCgluc, fasting serum insulin concentrations, area under the insulin curve, and height and appearance time of insulin response. Yet, analysis of acylcarnitines revealed higher propionylcarnitine concentrations (P = 0.03) when fed the prebiotic diet, suggesting colonic fermentation and propionate absorption. Prebiotic supplementation reduced methylmalonylcarnitine (P = 0.072) and aspartate aminotransferase concentrations (P = 0.025), both indicating reduced gluconeogenesis from amino acids. This trial evidenced impaired glucose tolerance and altered insulin response to glucose administration in obese compared to non-obese cats, regardless of dietary intervention; yet modulation of glucose metabolism by enhancing gluconeogenesis from propionate and inhibition of amino acid catabolism can be suggested.


Assuntos
Aminoácidos/metabolismo , Inulina/farmacologia , Obesidade/veterinária , Oligossacarídeos/farmacologia , Propionatos/metabolismo , Animais , Área Sob a Curva , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Peso Corporal , Doenças do Gato/prevenção & controle , Gatos , Feminino , Insulina/sangue , Inulina/uso terapêutico , Masculino , Obesidade/prevenção & controle , Oligossacarídeos/uso terapêutico , Orquiectomia/veterinária , Ovariectomia/veterinária , Prebióticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA