Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Foods ; 8(3)2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30841518

RESUMO

BACKGROUND: Origanum syriacum L. is an aromatic plant growing wild in Lebanon. This species is highly used in Lebanese traditional medicine and is a staple food in Lebanese gastronomy. Due to the over-harvesting, this species has become a cultivated crop rather than being collected from the wild. This study aims to evaluate the chemical polymorphism according to soil type. METHODS: Plant samples were cultivated in different soil types including manure, potting mix, professional agriculture mixture, vegetable compost, nursery soils, and natural agricultural soil inoculated with arbuscular mycorrhizal fungi. After 16 weeks of culture, fresh shoot biomass was measured. Root colonization rate was evaluated and foliar biomasses were used for essential oil (EO) extraction. EO yield was calculated and the identification of the main chemical compounds of EO samples was performed by gas chromatography (GC) and gas chromatography⁻mass spectrometry (GC/MS). RESULTS: Our findings revealed that the soil type affects the O. syriacum chemotype. Indeed, the EO samples could be divided into two groups: thymol chemotype group including manure and vegetable compost soils and non-sterilized non-inoculated EO samples, and the thymol/carvacrol chemotype including potting mix, professional agriculture mixture, nursery mixture, sterilized non-inoculated, non-sterilized inoculated, and sterilized inoculated EO samples. These results showed that manure and vegetable compost soils promoted thymol synthesis, whereas potting mix, professional agriculture mixture, and nursery mixture soils were thymol/carvacrol chemotype. Moreover, mycorrhizal inoculation increased carvacrol and reduced thymol productions in comparison to non-inoculated conditions. Additionally, mycorrhizal inoculation showed significant enhancements in mycorrhizal rates and shoot biomass production with respect to the non-sterilized soil. CONCLUSIONS: These variations confirm the influence of the edaphic conditions on the chemical components biosynthesis pathways of oregano plants. The results of this investigation could be used for determining optimal soil type, leading to a good quality herb production.

2.
Ecotoxicol Environ Saf ; 138: 190-198, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28061412

RESUMO

Aided phytostabilization using coal fly ashes (CFAs) is an interesting technique to clean-up polluted soils and valorizing industrial wastes. In this context, our work aims to study the effect of two CFAs: silico-aluminous (CFA1) and sulfo-calcic (CFA2) ones, 10 years after their addition, on the phytostabilization of a highly Cd (cadmium), Pb (lead) and Zn (zinc) contaminated agricultural soil, with four forest tree species: Robinia pseudoacacia, Alnus glutinosa, Acer pseudoplatanus and Salix alba. To assess the effect of CFAs on trees, leaf fatty acid composition, malondialdehyde (MDA), oxidized and reduced glutathione contents ratio (GSSG: GSH), 8-hydroxy-2'-deoxyguanosine (8-OHdG), Peroxidase (PO) and Superoxide dismutase (SOD) activities were examined. Our results showed that CFA amendments decreased the CaCl2-extractable fraction of Cd and Zn from the soil. However, no significant effect was observed on metal trace element (MTE) concentrations in leaves. Fatty acid percentages were only affected by the addition of sulfo-calcic CFA. The most affected species were A. glutinosa and R. pseudoacacia in which C16:0, C18:0 and C18:2 percentages increased significantly whereas the C18:3 decreased. The addition of sulfo-calcic CFA induced the antioxidant systems response in tree leaves. An increase of SOD and POD activities in leaves of trees planted on the CFA2-amended plot was recorded. Conversely, silico-aluminous CFA generated a reduction of lipid and DNA oxidation associated with the absence or low induction of anti-oxidative processes. Our study evidenced oxidative stress alleviation in tree leaves due to CFA amendments. MTE mobility in contaminated soil and their accumulation in leaves differed with the nature of CFA amendments and the selected tree species.


Assuntos
Cinza de Carvão , Estresse Oxidativo , Folhas de Planta/metabolismo , Poluentes do Solo/análise , Solo/química , Árvores/metabolismo , 8-Hidroxi-2'-Desoxiguanosina , Acer , Alnus , Biodegradação Ambiental , Cádmio/análise , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Ácidos Graxos/metabolismo , Glutationa/metabolismo , Chumbo/análise , Malondialdeído/metabolismo , Peroxidase/metabolismo , Folhas de Planta/química , Folhas de Planta/enzimologia , Robinia , Salix , Superóxido Dismutase/metabolismo , Fatores de Tempo , Oligoelementos/análise , Zinco/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA