Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 122: 111888, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33641896

RESUMO

Nanoparticles (NPs) have gained importance in technological advances owing to their user friendly enhanced and efficient physical, chemical, and biological characteristics compared to their bulk counterparts. Biological synthesis of NPs by using a microorganism, enzymes, or plant extracts offers a greener and eco-friendly approach besides many advantages over physical or chemical approaches. This study reports the biosynthesis of silver nanoparticles (AgNPs) using Nostoc muscorum NCCU 442 aqueous extract as the reducing and capping agent for AgNPs synthesis. The synthesized nanoparticles were characterized by UV-VIS spectrum, SEM, EDS, TEM, AFM, DLS and XRD. Results showed distinguishing polycrystalline nature of synthesized AgNPs with surface plasmon significant band in the size range of 6-45nm with average 30 size nm. FT-IR study revealed the role of secondary metabolites present in aqueous extract for the synthesis of AgNPs. Biological activities of purified AgNPs as antioxidant and antibacterial potential showed the highest antibacterial activity against Staphylococcus aureus MTCC 902.


Assuntos
Nanopartículas Metálicas , Prata , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Environ Pollut ; 267: 115482, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32889517

RESUMO

Extensive use of magnetic iron oxide (magnetite) nanoparticles (IONP) has raised concerns about their biocompatibility. It has also stimulated the search for its green synthesis with greater biocompatibility. Addressing the issue, this study investigates the molecular nanotoxicity of IONP with embryonic and adult zebrafish, and reveal novel green fabrication of iron oxide nanoparticles (P-IONP) using medicinal plant extract of Phyllanthus niruri. The synthesized P-IONP was having a size of 42 ± 08 nm and a zeta potential of -38 ± 06 mV with hydrodynamic diameter of 109 ± 09 nm and 90emu/g magnetic saturation value. High antibacterial efficacy of P-IONP was found against E.coli. Comparative in vivo biocompatibility assessment with zebrafish confirmed higher biocompatibility of P-IONP compared to commercial C-IONP in the relevance of mortality rate, hatching rate, heart rate, and morphological abnormalities. LC50 of P-IONP and C-IONP was 202 µg/ml and 126 µg/ml, respectively. Molecular nano-biocompatibility analysis revealed the phenomenon as an effect of induced apoptosis lead by dysregulation of induced oxidative stress due to structural and functional influence of IONP to Sod1 and Tp53 proteins through intrinsic atomic interaction.


Assuntos
Nanopartículas , Phyllanthus , Animais , Antibacterianos/toxicidade , Apoptose , Compostos Férricos/farmacologia , Estresse Oxidativo , Peixe-Zebra
3.
Sci Adv ; 6(28): eabb8097, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32691011

RESUMO

The prevalence of respiratory illness caused by the novel SARS-CoV-2 virus associated with multiple organ failures is spreading rapidly because of its contagious human-to-human transmission and inadequate globalhealth care systems. Pharmaceutical repurposing, an effective drug development technique using existing drugs, could shorten development time and reduce costs compared to those of de novo drug discovery. We carried out virtual screening of antiviral compounds targeting the spike glycoprotein (S), main protease (Mpro), and the SARS-CoV-2 receptor binding domain (RBD)-angiotensin-converting enzyme 2 (ACE2) complex of SARS-CoV-2. PC786, an antiviral polymerase inhibitor, showed enhanced binding affinity to all the targets. Furthermore, the postfusion conformation of the trimeric S protein RBD with ACE2 revealed conformational changes associated with PC786 drug binding. Exploiting immunoinformatics to identify T cell and B cell epitopes could guide future experimental studies with a higher probability of discovering appropriate vaccine candidates with fewer experiments and higher reliability.


Assuntos
Antivirais/farmacologia , Betacoronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Cisteína Endopeptidases/química , Desenho de Fármacos , Pandemias/prevenção & controle , Peptidil Dipeptidase A/química , Pneumonia Viral/prevenção & controle , Glicoproteína da Espícula de Coronavírus/química , Proteínas não Estruturais Virais/química , Enzima de Conversão de Angiotensina 2 , Benzamidas , Benzazepinas , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/metabolismo , Sítios de Ligação , COVID-19 , Proteases 3C de Coronavírus , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Cisteína Endopeptidases/imunologia , Cisteína Endopeptidases/metabolismo , Avaliação Pré-Clínica de Medicamentos , Epitopos de Linfócito B/efeitos dos fármacos , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/efeitos dos fármacos , Epitopos de Linfócito T/imunologia , Humanos , Simulação de Acoplamento Molecular , Peptidil Dipeptidase A/imunologia , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Compostos de Espiro/farmacologia , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/metabolismo
4.
Ecotoxicol Environ Saf ; 192: 110321, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32061978

RESUMO

Day to day consumption of black pepper raise concern about the detailed information about their medicinal, pharmaceutical values and knowledge about the biocompatibility with respect to ecosystem. This study investigates the in vivo selective molecular biocompatibility of its seed cover (SC) and seed core (SP) powder extract using embryonic zebrafish model. Gas chromatography mass spectrometry (GCMS) analysis of the extract prepared by grinding showed presence of different components with "piperine" as principle component. Biocompatibility analysis showed dose and time dependent selective effect of SC and SP with LC50 of 30.4 µg/ml and 35.6 µg/ml, respectively on survivability, hatching and heartbeat rate in embryonic zebrafish. Mechanistic investigation elucidated it as effect of accumulation and internalization of black pepper leading to their influence on structure and function of cellular proteins hatching enzyme (he1a), superoxide dismutase (sod1) and tumor protein (tp53) responsible for delayed hatching, oxidative stress induction and apoptosis. The study provided insight to selective biocompatibility of black pepper expedient to produce higher quality spices with respect to pharmaceutical, clinical and environmental aspects.


Assuntos
Alcaloides/química , Apoptose/efeitos dos fármacos , Benzodioxóis/química , Estresse Oxidativo/efeitos dos fármacos , Piper nigrum/toxicidade , Piperidinas/química , Alcamidas Poli-Insaturadas/química , Alcaloides/análise , Animais , Benzodioxóis/análise , Piper nigrum/química , Piper nigrum/embriologia , Piperidinas/análise , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Alcamidas Poli-Insaturadas/análise , Sementes/química , Sementes/toxicidade , Superóxido Dismutase/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo
5.
Sci Total Environ ; 713: 136521, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31951838

RESUMO

Increasing demand for magnesium oxide (MgO) nanoparticles (NP) due to their extensive use in different physical and biological applications has raised concern on their biocompatibility and toxicity to human health and ecological safety. This has instigated quest for detailed information on their toxicity mechanism, along with ecofriendly synthesis as a potential solution. This study explores the toxicity of MgO NP at the molecular level using embryonic zebrafish (Danio rerio) and depicts the green synthesis of MgO (G-MgO) NP using the extract from a medicinal plant Calotropis gigantea. Synthesized G-MgO NP were characterized using microscopy, spectroscopy, and dynamic light scattering. Stable 55 ± 10 nm sized MgO NP were generated with a zeta potential of 45 ± 15 mV and hydrodynamic size 110 ± 20 nm. UV-Vis spectrum showed a standard peak at 357 nm. Comparative cellular toxicity analysis showed higher biocompatibility of G-MgO NP compared to MgO NP with reference to the morphological changes, notochord development, and heartbeat rate in embryonic zebrafish LC50 of G-MgO NP was 520 µg/mL compared to 410 µg/mL of MgO NP. Molecular toxicity investigation revealed that the toxic effects of MgO NP was mainly due to the influential dysregulation in oxidative stress leading to apoptosis because of the accumulation and internalization of nanoparticles and their interaction with cellular proteins like Sod1 and p53, thereby affecting structural integrity and functionality. The study delineated the nanotoxicity of MgO NP and suggests the adoption and use of new green methodology for future production.


Assuntos
Nanopartículas Metálicas , Animais , Apoptose , Arginina , Óxido de Magnésio , Peixe-Zebra
6.
Artif Cells Nanomed Biotechnol ; 46(sup3): S671-S684, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30311784

RESUMO

Implication of gold nanoparticles in industrial and day-to-day life products at extensive scale has raised concern about their toxicity to environment and human health. Moreover, quest of new technologies for production of biocompatible nanoparticles increased. This study explores the molecular toxicology of AuNP with enlightenment of their green synthesis using medicinal plant extract as reducing and stabilizing agent. Synthesized CAuNP were characterized for their physiochemical properties by standard techniques like FESEM, TEM, DLS, UV-Vis spectroscopy and FTIR. GCMS analysis revealed the involvement of -OH compounds for CAuNP synthesis. Determined size and zeta potential of CAuNP was found to be 21 ± 08 nm and -24 ± 11 mV with SPR peak at 554 nm. LC50 of CAuNP with zebrafish embryos was 69 ± 12 µg/ml compared to 52 ± 06 µg/ml of AuNP. Gold nanoparticles were found to exhibit concentration dependent morphological abnormalities with acute effect at cellular and molecular level. Experimental and computational analysis depicted the nanotoxicity of gold nanoparticles as a consequence of oxidative stress generation leading to apoptosis due to their influential interaction with Sod1, He1a and tp53 mRNA and proteins. The investigation deciphered the nanotoxicity of gold nanoparticles and suggested the implication of new green methodology for their future productions.


Assuntos
Calotropis/química , Ouro , Nanopartículas Metálicas/química , Extratos Vegetais/química , RNA/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Ouro/química , Ouro/farmacologia , Humanos , Teste de Materiais , Estresse Oxidativo/efeitos dos fármacos , Peixe-Zebra
7.
J Ethnopharmacol ; 96(1-2): 31-6, 2005 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-15588647

RESUMO

Oral administration of saponins isolated from Albizia lebbeck bark at the dose level of 50 mg/kg/b.w. per day for 60 days to male rats brought about a significant decrease in the weights of testes, epididymides, seminal vesicle and ventral prostate. The production of round spermatid was reduced by 73.04% in Albizia lebbeck treated rats. The population of preleptotene spermatocytes and spermatogonia were reduced by 65.07% and 47.48% and secondary spermatocytes by 73.41%, respectively. Cross sectional surface area of Sertoli cells as well as the cell counts were found to be depleted significantly. Leydig cell nuclear area and number of mature Leydig cells were decreased by 57.47% and 54.42%, respectively. Sperm motility as well as sperm density were reduced significantly. Albizia lebbeck reduced the fertility of male rats by 100%. There were no significant changes in RBC and WBC count, haemoglobin, haematocrit and glucose in the blood and cholesterol, protein, triglyceride and phospholipid in the serum. The protein, glycogen and cholesterol contents of the testes, fructose in the seminal vesicle and protein in epididymides were significantly decreased. Histoarchitecture of the testes showed vacuolization at primary spermatocytes stage. Highly reduced seminiferous tubular diameter and increased intertubular space were also observed when compared to controls.


Assuntos
Albizzia , Genitália Masculina/efeitos dos fármacos , Casca de Planta , Saponinas , Administração Oral , Albizzia/química , Animais , Peso Corporal/efeitos dos fármacos , Células Cultivadas , Epididimo/anatomia & histologia , Epididimo/efeitos dos fármacos , Genitália Masculina/anatomia & histologia , Masculino , Tamanho do Órgão/efeitos dos fármacos , Casca de Planta/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Próstata/anatomia & histologia , Próstata/efeitos dos fármacos , Ratos , Ratos Wistar , Saponinas/química , Glândulas Seminais/anatomia & histologia , Glândulas Seminais/efeitos dos fármacos , Motilidade dos Espermatozoides/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA