Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Mol Metab ; 59: 101457, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35150907

RESUMO

OBJECTIVE: Polyunsaturated fatty acid (PUFA) supplements have been trialled as a treatment for a number of conditions and produced a variety of results. This variety is ascribed to the supplements, that often comprise a mixture of fatty acids, and to different effects in different organs. In this study, we tested the hypothesis that the supplementation of individual PUFAs has system-level effects that are dependent on the molecular structure of the PUFA. METHODS: We undertook a network analysis using Lipid Traffic Analysis to identify both local and system-level changes in lipid metabolism using publicly available lipidomics data from a mouse model of supplementation with FA(20:4n-6), FA(20:5n-3), and FA(22:6n-3); arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid, respectively. Lipid Traffic Analysis is a new computational/bioinformatics tool that uses the spatial distribution of lipids to pinpoint changes or differences in control of metabolism, thereby suggesting mechanistic reasons for differences in observed lipid metabolism. RESULTS: There was strong evidence for changes to lipid metabolism driven by and dependent on the structure of the supplemented PUFA. Phosphatidylcholine and triglycerides showed a change in the variety more than the total number of variables, whereas phosphatidylethanolamine and phosphatidylinositol showed considerable change in both which variables and the number of them, in a highly PUFA-dependent manner. There was also evidence for changes to the endogenous biosynthesis of fatty acids and to both the elongation and desaturation of fatty acids. CONCLUSIONS: These results show that the full biological impact of PUFA supplementation is far wider than any single-organ effect and implies that supplementation and dosing with PUFAs require a system-level assessment.


Assuntos
Ácidos Graxos Insaturados , Metabolismo dos Lipídeos , Animais , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/metabolismo , Ácidos Graxos , Ácidos Graxos Insaturados/metabolismo , Camundongos
2.
Sci Rep ; 9(1): 2903, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814564

RESUMO

Phosphorylation of the translation initiation factor eIF2α within the mediobasal hypothalamus is known to suppress food intake, but the role of the eIF2α phosphatases in regulating body weight is poorly understood. Mice deficient in active PPP1R15A, a stress-inducible eIF2α phosphatase, are healthy and more resistant to endoplasmic reticulum stress than wild type controls. We report that when female Ppp1r15a mutant mice are fed a high fat diet they gain less weight than wild type littermates owing to reduced food intake. This results in healthy leaner Ppp1r15a mutant animals with reduced hepatic steatosis and improved insulin sensitivity, albeit with a possible modest defect in insulin secretion. By contrast, no weight differences are observed between wild type and Ppp1r15a deficient mice fed a standard diet. We conclude that female mice lacking the C-terminal PP1-binding domain of PPP1R15A show reduced dietary intake and preserved glucose tolerance. Our data indicate that this results in reduced weight gain and protection from diet-induced obesity.


Assuntos
Hipotálamo/metabolismo , Obesidade/prevenção & controle , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Aumento de Peso/fisiologia , Animais , Dieta Hiperlipídica , Ingestão de Alimentos , Estresse do Retículo Endoplasmático , Feminino , Humanos , Resistência à Insulina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação
3.
Cell Rep ; 25(2): 278-287.e4, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30304668

RESUMO

Leptin acts on hypothalamic pro-opiomelanocortin (POMC) neurons to regulate glucose homeostasis, but the precise mechanisms remain unclear. Here, we demonstrate that leptin-induced depolarization of POMC neurons is associated with the augmentation of a voltage-gated calcium (CaV) conductance with the properties of the "R-type" channel. Knockdown of the pore-forming subunit of the R-type (CaV2.3 or Cacna1e) conductance in hypothalamic POMC neurons prevented sustained leptin-induced depolarization. In vivo POMC-specific Cacna1e knockdown increased hepatic glucose production and insulin resistance, while body weight, feeding, or leptin-induced suppression of food intake were not changed. These findings link Cacna1e function to leptin-mediated POMC neuron excitability and glucose homeostasis and may provide a target for the treatment of diabetes.


Assuntos
Canais de Cálcio Tipo R/metabolismo , Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Glucose/metabolismo , Leptina/farmacologia , Fígado/metabolismo , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Animais , Canais de Cálcio Tipo R/genética , Proteínas de Transporte de Cátions/genética , Células Cultivadas , Homeostase , Humanos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos
4.
Adv Nutr ; 8(5): 694-704, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28916570

RESUMO

The incidence of overweight and obesity has reached epidemic proportions, making the control of body weight and its complications a primary health problem. Diet has long played a first-line role in preventing and managing obesity. However, beyond the obvious strategy of restricting caloric intake, growing evidence supports the specific antiobesity effects of some food-derived components, particularly (poly)phenolic compounds. The relatively new rediscovery of active brown adipose tissue in adult humans has generated interest in this tissue as a novel and viable target for stimulating energy expenditure and controlling body weight by promoting energy dissipation. This review critically discusses the evidence supporting the concept that the antiobesity effects ascribed to (poly)phenols might be dependent on their capacity to promote energy dissipation by activating brown adipose tissue. Although discrepancies exist in the literature, most in vivo studies with rodents strongly support the role of some (poly)phenol classes, particularly flavan-3-ols and resveratrol, in promoting energy expenditure. Some human data currently are available and most are consistent with studies in rodents. Further investigation of effects in humans is warranted.


Assuntos
Tecido Adiposo Marrom/fisiologia , Metabolismo Energético , Polifenóis/farmacologia , Agonistas Adrenérgicos/farmacologia , Animais , Fármacos Antiobesidade/farmacologia , Peso Corporal , Dieta , Modelos Animais de Doenças , Flavonoides/farmacologia , Humanos , Obesidade/tratamento farmacológico , Resveratrol , Estilbenos/farmacologia , Chá/química , Termogênese/efeitos dos fármacos , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
5.
Cell Metab ; 26(1): 212-229.e12, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28683288

RESUMO

Thyroid hormones (THs) act in the brain to modulate energy balance. We show that central triiodothyronine (T3) regulates de novo lipogenesis in liver and lipid oxidation in brown adipose tissue (BAT) through the parasympathetic (PSNS) and sympathetic nervous system (SNS), respectively. Central T3 promotes hepatic lipogenesis with parallel stimulation of the thermogenic program in BAT. The action of T3 depends on AMP-activated protein kinase (AMPK)-induced regulation of two signaling pathways in the ventromedial nucleus of the hypothalamus (VMH): decreased ceramide-induced endoplasmic reticulum (ER) stress, which promotes BAT thermogenesis, and increased c-Jun N-terminal kinase (JNK) activation, which controls hepatic lipid metabolism. Of note, ablation of AMPKα1 in steroidogenic factor 1 (SF1) neurons of the VMH fully recapitulated the effect of central T3, pointing to this population in mediating the effect of central THs on metabolism. Overall, these findings uncover the underlying pathways through which central T3 modulates peripheral metabolism.


Assuntos
Metabolismo Energético , Hipotálamo/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Transdução de Sinais , Hormônios Tireóideos/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Termogênese , Tri-Iodotironina/metabolismo
6.
Cell Rep ; 11(3): 335-43, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25865886

RESUMO

Hypothalamic ribosomal S6K1 has been suggested as a point of convergence for hormonal and nutrient signals in the regulation of feeding behavior, bodyweight, and glucose metabolism. However, the long-term effects of manipulating hypothalamic S6K1 signaling on energy homeostasis and the cellular mechanisms underlying these roles are unclear. We therefore inactivated S6K1 in pro-opiomelanocortin (POMC) and agouti-related protein (AgRP) neurons, key regulators of energy homeostasis, but in contrast to the current view, we found no evidence that S6K1 regulates food intake and bodyweight. In contrast, S6K1 signaling in POMC neurons regulated hepatic glucose production and peripheral lipid metabolism and modulated neuronal excitability. S6K1 signaling in AgRP neurons regulated skeletal muscle insulin sensitivity and was required for glucose sensing by these neurons. Our findings suggest that S6K1 signaling is not a general integrator of energy homeostasis in the mediobasal hypothalamus but has distinct roles in the regulation of glucose homeostasis by POMC and AgRP neurons.


Assuntos
Metabolismo Energético/fisiologia , Comportamento Alimentar/fisiologia , Glucose/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Peso Corporal/fisiologia , Homeostase/fisiologia , Resistência à Insulina/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pró-Opiomelanocortina/metabolismo , Transdução de Sinais/fisiologia
7.
Cell ; 149(4): 871-85, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22579288

RESUMO

Thermogenesis in brown adipose tissue (BAT) is fundamental to energy balance and is also relevant for humans. Bone morphogenetic proteins (BMPs) regulate adipogenesis, and, here, we describe a role for BMP8B in the direct regulation of thermogenesis. BMP8B is induced by nutritional and thermogenic factors in mature BAT, increasing the response to noradrenaline through enhanced p38MAPK/CREB signaling and increased lipase activity. Bmp8b(-/-) mice exhibit impaired thermogenesis and reduced metabolic rate, causing weight gain despite hypophagia. BMP8B is also expressed in the hypothalamus, and Bmp8b(-/-) mice display altered neuropeptide levels and reduced phosphorylation of AMP-activated protein kinase (AMPK), indicating an anorexigenic state. Central BMP8B treatment increased sympathetic activation of BAT, dependent on the status of AMPK in key hypothalamic nuclei. Our results indicate that BMP8B is a thermogenic protein that regulates energy balance in partnership with hypothalamic AMPK. BMP8B may offer a mechanism to specifically increase energy dissipation by BAT.


Assuntos
Tecido Adiposo Marrom/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Dieta , Obesidade/metabolismo , Termogênese , Proteínas Quinases Ativadas por AMP/metabolismo , Adipogenia , Animais , Proteínas Morfogenéticas Ósseas/genética , Metabolismo Energético , Feminino , Hipotálamo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Norepinefrina/metabolismo , Ratos , Ratos Sprague-Dawley
8.
Diabetes ; 61(4): 807-17, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22315316

RESUMO

Smokers around the world commonly report increased body weight after smoking cessation as a major factor that interferes with their attempts to quit. Numerous controlled studies in both humans and rodents have reported that nicotine exerts a marked anorectic action. The effects of nicotine on energy homeostasis have been mostly pinpointed in the central nervous system, but the molecular mechanisms controlling its action are still not fully understood. The aim of this study was to investigate the effect of nicotine on hypothalamic AMP-activated protein kinase (AMPK) and its effect on energy balance. Here we demonstrate that nicotine-induced weight loss is associated with inactivation of hypothalamic AMPK, decreased orexigenic signaling in the hypothalamus, increased energy expenditure as a result of increased locomotor activity, increased thermogenesis in brown adipose tissue (BAT), and alterations in fuel substrate utilization. Conversely, nicotine withdrawal or genetic activation of hypothalamic AMPK in the ventromedial nucleus of the hypothalamus reversed nicotine-induced negative energy balance. Overall these data demonstrate that the effects of nicotine on energy balance involve specific modulation of the hypothalamic AMPK-BAT axis. These targets may be relevant for the development of new therapies for human obesity.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Nicotina/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Animais , Apetite/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Atividade Motora/efeitos dos fármacos , Neuropeptídeo Y/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Temazepam , Termogênese/efeitos dos fármacos
9.
Mol Nutr Food Res ; 55(12): 1759-70, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22144044

RESUMO

SCOPE: Dysfunctional adipose tissue may be an important trigger of molecular inflammatory pathways that cause cardiovascular diseases. Our aim was to determine whether the specific quality and quantity of dietary fat produce differential postprandial inflammatory responses in adipose tissue from metabolic syndrome (MetS) patients. METHODS AND RESULTS: A randomized, controlled trial conducted within the LIPGENE study assigned MetS patients to 1 of 4 diets: (i) high-saturated fatty acid (HSFA), (ii) high-monounsaturated fatty acid (HMUFA), (iii) low-fat, high-complex carbohydrate diet supplemented with n-3 polyunsaturated fatty acids (PUFA) (LFHCC n-3), and (iv) low-fat, high-complex carbohydrate diet supplemented with placebo (LFHCC), for 12 wk each. A fat challenge reflecting the fatty acid composition as the original diets was conducted post-intervention. We found that p65 gene expression is induced in adipose tissue (p=0.003) at the postprandial state. In addition, IκBα (p<0.001), MCP-1 (p<0.001) and IL-1ß (p<0.001) gene expression was equally induced in the postprandial state, regardless of the quality and quantity of the dietary fat. Notably, IL-6 transcripts were only detected in the postprandial state. CONCLUSIONS: Our results indicate that individuals with MetS typically exhibit exacerbated adipose tissue postprandial inflammatory responses, which seem to be independent of the quality and quantity of dietary fat.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Ácidos Graxos Monoinsaturados/administração & dosagem , Ácidos Graxos Ômega-3/administração & dosagem , Inflamação/fisiopatologia , Síndrome Metabólica/fisiopatologia , Período Pós-Prandial/efeitos dos fármacos , Tecido Adiposo/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Dieta , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/sangue , Masculino , Pessoa de Meia-Idade , Inibidor de NF-kappaB alfa
10.
PLoS Biol ; 9(7): e1001116, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21814494

RESUMO

Two crucial biological processes are (1) the sensing and coordination of responses to low oxygen levels and (2) the control of food intake and energy expenditure. The hypoxia-inducible factor (HIF) family of proteins is known to regulate responses to low oxygen, whereas neuropeptides derived from proopiomelanocortin (POMC) are implicated in the control of food intake and energy expenditure. It is now becoming apparent that these two apparently disparate processes may be linked, with the exciting discovery that HIF proteins can act in the brain to regulate food intake and energy expenditure as reported in the current issue of PLoS Biology. This primer discusses the traditional role of HIF proteins in terms of responding to oxygen levels in the periphery and also their new role in coordinating responses to nutrients in the brain through regulation of POMC.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Metabolismo Energético , Glucose/farmacologia , Hipotálamo/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Pró-Opiomelanocortina/genética , Animais , Feminino , Masculino
11.
PLoS One ; 6(6): e20571, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21695181

RESUMO

The success of antipsychotic drug treatment in patients with schizophrenia is limited by the propensity of these drugs to induce hyperphagia, weight gain and other metabolic disturbances, particularly evident for olanzapine and clozapine. However, the molecular mechanisms involved in antipsychotic-induced hyperphagia remain unclear. Here, we investigate the effect of olanzapine administration on the regulation of hypothalamic mechanisms controlling food intake, namely neuropeptide expression and AMP-activated protein kinase (AMPK) phosphorylation in rats. Our results show that subchronic exposure to olanzapine upregulates neuropeptide Y (NPY) and agouti related protein (AgRP) and downregulates proopiomelanocortin (POMC) in the arcuate nucleus of the hypothalamus (ARC). This effect was evident both in rats fed ad libitum and in pair-fed rats. Of note, despite weight gain and increased expression of orexigenic neuropeptides, subchronic administration of olanzapine decreased AMPK phosphorylation levels. This reduction in AMPK was not observed after acute administration of either olanzapine or clozapine. Overall, our data suggest that olanzapine-induced hyperphagia is mediated through appropriate changes in hypothalamic neuropeptides, and that this effect does not require concomitant AMPK activation. Our data shed new light on the hypothalamic mechanism underlying antipsychotic-induced hyperphagia and weight gain, and provide the basis for alternative targets to control energy balance.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Benzodiazepinas/farmacologia , Hiperfagia/induzido quimicamente , Hipotálamo/enzimologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neuropeptídeos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Aminoimidazol Carboxamida/administração & dosagem , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Benzodiazepinas/administração & dosagem , Clozapina/administração & dosagem , Clozapina/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hiperfagia/sangue , Hipotálamo/efeitos dos fármacos , Injeções Intraventriculares , Insulina/sangue , Leptina/sangue , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Olanzapina , Orexinas , Fosforilação/efeitos dos fármacos , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Ratos , Ratos Sprague-Dawley , Ribonucleotídeos/administração & dosagem , Ribonucleotídeos/farmacologia
12.
Rev Endocr Metab Disord ; 12(3): 127-40, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21347863

RESUMO

The AMP-activated protein kinase (AMPK) is the downstream constituent of a kinase cascade that acts as a sensor of cellular energy levels. Current data unequivocally indicate that hypothalamic AMPK plays a key role in the control of the whole body energy balance, by integrating peripheral signals, such as hormones and metabolites, with central signals, such as neuropeptides, and eliciting allostatic changes in energy homeostasis. Although the molecular details of these interactions are not fully understood, recent evidence has suggested that the interaction between AMPK with hypothalamic lipid metabolism and other metabolic sensors, such as the uncoupling protein 2 (UCP-2), the mammalian target of rapamycin (mTOR) and the deacetylase sirtuin 1 (SIRT1), may play a main role in the hypothalamic control of feeding and energy expenditure. Here, we summarize the role of hypothalamic AMPK as whole body energy gauge. Understanding this key molecule and especially its functions at central level may provide new therapeutic targets for the treatment of metabolic alterations and obesity.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético/fisiologia , Hipotálamo/metabolismo , Animais , Ingestão de Alimentos/fisiologia , Humanos , Metabolismo dos Lipídeos/fisiologia , Obesidade/metabolismo , Obesidade/fisiopatologia
13.
J Mol Endocrinol ; 46(2): R43-63, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21169422

RESUMO

Ghrelin, the endogenous ligand of the GH secretagogue receptor, has a pleiotropic role in the modulation of energy balance. Recent evidence has demonstrated that besides its orexigenic role, ghrelin regulates central and peripheral lipid metabolism through specific control of hypothalamic AMP-activated protein kinase (AMPK), a critical metabolic gauge regulating both cellular and whole-body energy homeostasis. In this review, we summarize the new milestones of ghrelin's actions on energy balance, with particular focus on its molecular interaction with hypothalamic AMPK and fatty acid metabolism. Understanding this new metabolic pathway can provide new therapeutic targets for the treatment of obesity and the metabolic syndrome.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Grelina/metabolismo , Metabolismo dos Lipídeos/fisiologia , Receptores de Grelina/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Peso Corporal , Metabolismo Energético/fisiologia , Feminino , Expressão Gênica , Grelina/genética , Hormônio do Crescimento/metabolismo , Homeostase , Humanos , Hipotálamo/metabolismo , Masculino , Síndrome Metabólica/metabolismo , Síndrome Metabólica/fisiopatologia , Camundongos , Camundongos Transgênicos , Obesidade/metabolismo , Obesidade/fisiopatologia , Receptores de Grelina/genética , Roedores , Transdução de Sinais
14.
Nat Med ; 16(9): 1001-8, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20802499

RESUMO

Thyroid hormones have widespread cellular effects; however it is unclear whether their effects on the central nervous system (CNS) contribute to global energy balance. Here we demonstrate that either whole-body hyperthyroidism or central administration of triiodothyronine (T3) decreases the activity of hypothalamic AMP-activated protein kinase (AMPK), increases sympathetic nervous system (SNS) activity and upregulates thermogenic markers in brown adipose tissue (BAT). Inhibition of the lipogenic pathway in the ventromedial nucleus of the hypothalamus (VMH) prevents CNS-mediated activation of BAT by thyroid hormone and reverses the weight loss associated with hyperthyroidism. Similarly, inhibition of thyroid hormone receptors in the VMH reverses the weight loss associated with hyperthyroidism. This regulatory mechanism depends on AMPK inactivation, as genetic inhibition of this enzyme in the VMH of euthyroid rats induces feeding-independent weight loss and increases expression of thermogenic markers in BAT. These effects are reversed by pharmacological blockade of the SNS. Thus, thyroid hormone-induced modulation of AMPK activity and lipid metabolism in the hypothalamus is a major regulator of whole-body energy homeostasis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético/fisiologia , Ácidos Graxos/metabolismo , Hipotálamo/enzimologia , Glândula Tireoide/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/fisiologia , Proteína Relacionada com Agouti/genética , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Cerulenina/farmacologia , Inibidores da Síntese de Ácidos Graxos/farmacologia , Hiperfagia/etiologia , Hipertireoidismo/complicações , Hipertireoidismo/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Pró-Opiomelanocortina/metabolismo , RNA Mensageiro/genética , Ratos , Termogênese/fisiologia , Hormônio Liberador de Tireotropina/genética , Tiroxina/sangue , Tiroxina/farmacologia , Tri-Iodotironina/sangue
15.
FASEB J ; 24(8): 2670-9, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20335227

RESUMO

The orexigenic effect of ghrelin is mediated by neuropeptide Y (NPY) and agouti-related protein (AgRP) in the hypothalamic arcuate nucleus (ARC). Recent evidence also indicates that ghrelin promotes feeding through a mechanism involving activation of hypothalamic AMP-activated protein kinase (AMPK) and inactivation of acetyl-CoA carboxylase and fatty acid synthase (FAS). This results in decreased hypothalamic levels of malonyl-CoA, increased carnitine palmitoyltransferase 1 (CPT1) activity, and mitochondrial production of reactive oxygen species. We evaluated whether these molecular events are part of a unique signaling cascade or whether they represent alternative pathways mediating the orexigenic effect of ghrelin. Moreover, we examined the gender dependency of these mechanisms, because recent evidence has proposed that ghrelin orexigenic effect is reduced in female rats. We studied in both genders the effect of ghrelin on the expression of AgRP and NPY, as well as their transcription factors: cAMP response-element binding protein (CREB and its phosphorylated form, pCREB), forkhead box O1 (FoxO1 and its phosphorylated form, pFoxO1), and brain-specific homeobox transcription factor (BSX). In addition, to establish a mechanistic link between ghrelin, fatty acid metabolism, and neuropeptides, we evaluated the effect of ghrelin after blockage of hypothalamic fatty acid beta oxidation, by using the CPT1 inhibitor etomoxir. Ghrelin-induced changes in the AMPK-CPT1 pathway are associated with increased levels of AgRP and NPY mRNA expression through modulation of BSX, pCREB, and FoxO1, as well as decreased expression of endoplasmic reticulum (ER) stress markers in a gender-independent manner. In addition, blockage of hypothalamic fatty acid beta oxidation prevents the ghrelin-promoting action on AgRP and NPY mRNA expression, also in a gender-independent manner. Notably, this effect is associated with decreased BSX expression and reduced food intake. Overall, our data suggest that BSX integrates changes in neuronal metabolic status with ARC-derived neuropeptides in a gender-independent manner.


Assuntos
Ácidos Graxos/metabolismo , Grelina/farmacologia , Proteínas de Homeodomínio/genética , Hipotálamo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeos/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Proteína Relacionada com Agouti/efeitos dos fármacos , Proteína Relacionada com Agouti/genética , Animais , Ingestão de Alimentos , Feminino , Regulação da Expressão Gênica , Masculino , Neuropeptídeo Y/efeitos dos fármacos , Neuropeptídeo Y/genética , Neuropeptídeos/genética , Ratos , Fatores Sexuais , Fatores de Transcrição/genética
16.
Trends Mol Med ; 14(12): 539-49, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18977694

RESUMO

AMP-activated protein kinase (AMPK) is the downstream component of a kinase cascade that acts as a gauge of cellular energy levels. Over the last few years, accumulating evidence has demonstrated that AMPK is also involved in the regulation of energy balance at the whole-body level by responding to hormones and nutrient signals, which leads to changes in energy homeostasis. The physiological relevance of this new role of AMPK is demonstrated by the fact that impairment of AMPK function is associated with metabolic alterations, insulin resistance, obesity, hormonal disorders and cardiovascular disease. Here, we summarize the role of AMPK in the regulation of energy homeostasis. Understanding this key enzyme and its tissue-specific regulation will provide new targets for the treatment of metabolic disorders.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético/fisiologia , Homeostase/fisiologia , Animais , Regulação do Apetite/fisiologia , Transtornos da Alimentação e da Ingestão de Alimentos/etiologia , Glucose/metabolismo , Hormônios/metabolismo , Humanos , Hipotálamo/enzimologia , Metabolismo dos Lipídeos , Modelos Biológicos , Obesidade/etiologia , Transdução de Sinais
17.
Curr Opin Clin Nutr Metab Care ; 11(4): 483-90, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18542011

RESUMO

PURPOSE OF REVIEW: To revise current available information related to the role of brain lipogenic pathways in the regulation of energy homeostasis. RECENT FINDINGS: The 'classical' hypothalamic neuropeptide view of feeding regulation has been extensively reviewed and revised during the past few years. Accumulating evidence indicates that the modulation of lipogenesis de novo in the hypothalamus, through selective pharmacologic and genetic manipulation of acetyl-CoA carboxylase, AMP-activated protein kinase, carnitine palmitoyltransferase 1, fatty acid synthase and malonyl-CoA decarboxylase enzymes, has a severe impact on food intake and body weight homeostasis. Furthermore, as these manipulations alter the hypothalamic pool of lipids, such as malonyl-CoA or long chain fatty acyl-CoA or both, the concept of lipids as signals of nutrient abundance able to modulate feeding in the hypothalamus has recently re-emerged. SUMMARY: In this review, we summarize what is known about brain lipogenesis and energy balance and propose further avenues of research. Defining these novel mechanisms could offer new targets for the treatment of obesity and metabolic syndrome.


Assuntos
Metabolismo Energético/fisiologia , Ácidos Graxos/metabolismo , Hipotálamo/metabolismo , Lipogênese/fisiologia , Ingestão de Alimentos , Ácidos Graxos/biossíntese , Comportamento Alimentar , Humanos , Hipotálamo/enzimologia
18.
Endocrinology ; 149(9): 4534-43, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18499762

RESUMO

Evidence suggests that the adipocyte-derived hormone resistin (RSTN) directly regulates both feeding and peripheral metabolism through, so far, undefined hypothalamic-mediated mechanisms. Here, we demonstrate that the anorectic effect of RSTN is associated with inappropriately decreased mRNA expression of orexigenic (agouti-related protein and neuropeptide Y) and increased mRNA expression of anorexigenic (cocaine and amphetamine-regulated transcript) neuropeptides in the arcuate nucleus of the hypothalamus. Of interest, RSTN also exerts a profound nutrition-dependent inhibitory effect on hypothalamic fatty acid metabolism, as indicated by increased phosphorylation levels of both AMP-activated protein kinase and its downstream target acetyl-coenzyme A carboxylase, associated with decreased expression of fatty acid synthase in the ventromedial nucleus of the hypothalamus. In addition, we also demonstrate that chronic central RSTN infusion results in decreased body weight and major changes in peripheral expression of lipogenic enzymes, in a tissue-specific and nutrition-dependent manner. Thus, in the fed state central RSTN is associated with induced expression of fatty acid synthesis enzymes and proinflammatory cytokines in liver, whereas its administration in the fasted state does so in white adipose tissue. Overall, our results indicate that RSTN controls feeding and peripheral lipid metabolism and suggest that hepatic RSTN-induced insulin resistance may be mediated by central activation of de novo lipogenesis in liver.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Hipotálamo/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Resistina/farmacologia , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Animais , Ingestão de Alimentos/efeitos dos fármacos , Jejum/metabolismo , Hipotálamo/metabolismo , Injeções Intraventriculares , Resistência à Insulina/fisiologia , Lipogênese/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Resistina/administração & dosagem , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Fatores de Tempo
19.
Cell Metab ; 7(5): 389-99, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18460330

RESUMO

Current evidence suggests that hypothalamic fatty acid metabolism may play a role in regulating food intake; however, confirmation that it is a physiologically relevant regulatory system of feeding is still incomplete. Here, we use pharmacological and genetic approaches to demonstrate that the physiological orexigenic response to ghrelin involves specific inhibition of fatty acid biosynthesis induced by AMP-activated protein kinase (AMPK) resulting in decreased hypothalamic levels of malonyl-CoA and increased carnitine palmitoyltransferase 1 (CPT1) activity. In addition, we also demonstrate that fasting downregulates fatty acid synthase (FAS) in a region-specific manner and that this effect is mediated by an AMPK and ghrelin-dependent mechanisms. Thus, decreasing AMPK activity in the ventromedial nucleus of the hypothalamus (VMH) is sufficient to inhibit ghrelin's effects on FAS expression and feeding. Overall, our results indicate that modulation of hypothalamic fatty acid metabolism specifically in the VMH in response to ghrelin is a physiological mechanism that controls feeding.


Assuntos
Ácidos Graxos/metabolismo , Grelina/fisiologia , Hipotálamo/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Western Blotting , Carnitina O-Palmitoiltransferase/metabolismo , Jejum/fisiologia , Ácido Graxo Sintases/antagonistas & inibidores , Ácido Graxo Sintases/metabolismo , Comportamento Alimentar , Hipotálamo/patologia , Hibridização In Situ , Leptina/metabolismo , Masculino , Malonil Coenzima A/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Fosforilação , Proteínas Quinases/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor fas
20.
J Am Coll Nutr ; 26(5): 434-44, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17914131

RESUMO

OBJECTIVE: To study the effects of three weight-maintenance diets with different macronutrient composition on carbohydrate, lipid metabolism, insulin and incretin levels in insulin-resistant subjects. METHODS: A prospective study was performed in eleven (7 W, 4 M) offspring of obese and type 2 diabetes patients. Subjects had a BMI > 25 Kg/m2, waist circumference (men/women) > 102/88, HBA1c < 6.5% and were regarded as insulin-resistant after an OGTT (Matsuda ISIm <4). They were randomly divided into three groups and underwent three dietary periods each of 28 days in a crossover design: a) diet high in saturated fat (SAT), b) diet rich in monounsaturated fat (MUFA; Mediterranean diet) and c) diet rich in carbohydrate (CHO). RESULTS: Body weight and resting energy expenditure did not changed during the three dietary periods. Fasting serum glucose concentrations fell during MUFA-rich and CHO-rich diets compared with high-SAT diets (5.02 +/- 0.1, 5.03 +/- 0.1, 5.50 +/- 0.2 mmol/L, respectively. Anova < 0.05). The MUFA-rich diet improved insulin sensitivity, as indicated by lower homeostasis model analysis-insulin resistance (HOMA-ir), compared with CHO-rich and high-SAT diets (2.32 +/- 0.3, 2.52 +/- 0.4, 2.72 +/- 0.4, respectively, Anova < 0.01). After a MUFA-rich and high-SAT breakfasts (443 kcal) the postprandial integrated area under curve (AUC) of glucose and insulin were lowered compared with isocaloric CHO-rich breakfast (7.8 +/- 1.3, 5.84 +/- 1.2, 11.9 +/- 2.7 mmol . 180 min/L, Anova < 0.05; and 1004 +/- 147, 1253 +/- 140, 2667 +/- 329 pmol . 180 min/L, Anova <0.01, respectively); while the integrated glucagon-like peptide-1 response increased with MUFA and SAT breakfasts compared with isocaloric CHO-rich meals (4.22 +/- 0.7, 4.34 +/- 1.1, 1.85 +/- 1.1, respectively, Anova < 0.05). Fasting and postprandial HDL cholesterol concentrations rose with MUFA-rich diets, and the AUCs of triacylglycerol fell with the CHO-rich diet. Similarly fasting proinsulin (PI) concentration fell, while stimulated ratio PI/I was not changed by MUFA-rich diet. CONCLUSIONS: Weight maintenance with a MUFA-rich diet improves HOMA-ir and fasting proinsulin levels in insulin-resistant subjects. Ingestion of a virgin olive oil-based breakfast decreased postprandial glucose and insulin concentrations, and increased HDL-C and GLP-1 concentrations as compared with CHO-rich diet.


Assuntos
Glicemia/metabolismo , Carboidratos da Dieta/administração & dosagem , Gorduras Insaturadas na Dieta/administração & dosagem , Gorduras na Dieta/administração & dosagem , Peptídeo 1 Semelhante ao Glucagon/sangue , Resistência à Insulina , Lipídeos/sangue , Análise de Variância , Área Sob a Curva , Calorimetria Indireta , Estudos Cross-Over , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Graxos/análise , Ácidos Graxos/sangue , Feminino , Teste de Tolerância a Glucose , Humanos , Incretinas/sangue , Insulina/sangue , Masculino , Pessoa de Meia-Idade , Obesidade/metabolismo , Período Pós-Prandial , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA