Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurobiol Dis ; 165: 105649, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35122944

RESUMO

BACKGROUND: PLA2G6-Associated Neurodegeneration (PLAN) is a rare neurodegenerative disease with autosomal recessive inheritance, which belongs to the NBIA (Neurodegeneration with Brain Iron Accumulation) group. Although the pathogenesis of the disease remains largely unclear, lipid peroxidation seems to play a central role in the pathogenesis. Currently, there is no cure for the disease. OBJECTIVE: In this work, we examined the presence of lipid peroxidation, iron accumulation and mitochondrial dysfunction in two cellular models of PLAN, patients-derived fibroblasts and induced neurons, and assessed the effects of α-tocopherol (vitamin E) in correcting the pathophysiological alterations in PLAN cell cultures. METHODS: Pathophysiological alterations were examined in fibroblasts and induced neurons generated by direct reprograming. Iron and lipofuscin accumulation were assessed using light and electron microscopy, as well as biochemical analysis techniques. Reactive Oxygen species production, lipid peroxidation and mitochondrial dysfunction were measured using specific fluorescent probes analysed by fluorescence microscopy and flow cytometry. RESULTS: PLAN fibroblasts and induced neurons clearly showed increased lipid peroxidation, iron accumulation and altered mitochondrial membrane potential. All these pathological features were reverted with vitamin E treatment. CONCLUSIONS: PLAN fibroblasts and induced neurons reproduce the main pathological alterations of the disease and provide useful tools for disease modelling. The main pathological alterations were corrected by Vitamin E supplementation in both models, suggesting that blocking lipid peroxidation progression is a critical therapeutic target.


Assuntos
Distrofias Neuroaxonais , Doenças Neurodegenerativas , Fosfolipases A2 do Grupo VI/metabolismo , Humanos , Ferro/metabolismo , Peroxidação de Lipídeos , Mitocôndrias/metabolismo , Distrofias Neuroaxonais/metabolismo , Distrofias Neuroaxonais/patologia , Doenças Neurodegenerativas/metabolismo , Vitamina E/metabolismo , Vitamina E/farmacologia
2.
Biochim Biophys Acta Mol Basis Dis ; 1866(6): 165726, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32061767

RESUMO

Mitochondrial diseases are considered rare genetic disorders characterized by defects in oxidative phosphorylation (OXPHOS). They can be provoked by mutations in nuclear DNA (nDNA) or mitochondrial DNA (mtDNA). MERRF (Myoclonic Epilepsy with Ragged-Red Fibers) syndrome is one of the most frequent mitochondrial diseases, principally caused by the m.8344A>G mutation in mtDNA, which affects the translation of all mtDNA-encoded proteins and therefore impairs mitochondrial function. In the present work, we evaluated autophagy and mitophagy flux in transmitochondrial cybrids and fibroblasts derived from a MERRF patient, reporting that Parkin-mediated mitophagy is increased in MERRF cell cultures. Our results suggest that supplementation with coenzyme Q10 (CoQ), a component of the electron transport chain (ETC) and lipid antioxidant, prevents Parkin translocation to the mitochondria. In addition, CoQ acts as an enhancer of autophagy and mitophagy flux, which partially improves cell pathophysiology. The significance of Parkin-mediated mitophagy in cell survival was evaluated by silencing the expression of Parkin in MERRF cybrids. Our results show that mitophagy acts as a cell survival mechanism in mutant cells. To confirm these results in one of the main affected cell types in MERRF syndrome, mutant induced neurons (iNs) were generated by direct reprogramming of patients-derived skin fibroblasts. The treatment of MERRF iNs with Guttaquinon CoQ10 (GuttaQ), a water-soluble derivative of CoQ, revealed a significant improvement in cell bioenergetics. These results indicate that iNs, along with fibroblasts and cybrids, can be utilized as reliable cellular models to shed light on disease pathomechanisms as well as for drug screening.


Assuntos
Metabolismo Energético/genética , Síndrome MERRF/genética , Ubiquinona/análogos & derivados , Ubiquitina-Proteína Ligases/genética , Autofagia/genética , Células Cultivadas , DNA Mitocondrial/genética , Fibroblastos/efeitos dos fármacos , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Síndrome MERRF/tratamento farmacológico , Síndrome MERRF/metabolismo , Síndrome MERRF/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/patologia , Mitofagia/genética , Fosforilação Oxidativa/efeitos dos fármacos , Transporte Proteico/genética , Ubiquinona/metabolismo , Ubiquinona/farmacologia
3.
Int J Mol Sci ; 20(20)2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-31635164

RESUMO

Atherosclerosis is the most common cause of cardiac deaths worldwide. Classically, atherosclerosis has been explained as a simple arterial lipid deposition with concomitant loss of vascular elasticity. Eventually, this condition can lead to consequent blood flow reduction through the affected vessel. However, numerous studies have demonstrated that more factors than lipid accumulation are involved in arterial damage at the cellular level, such as inflammation, autophagy impairment, mitochondrial dysfunction, and/or free-radical overproduction. In order to consider the correction of all of these pathological changes, new approaches in atherosclerosis treatment are necessary. Ubiquinone or coenzyme Q10 is a multifunctional molecule that could theoretically revert most of the cellular alterations found in atherosclerosis, such as cholesterol biosynthesis dysregulation, impaired autophagy flux and mitochondrial dysfunction thanks to its redox and signaling properties. In this review, we will show the latest advances in the knowledge of the relationships between coenzyme Q10 and atherosclerosis. In addition, as atherosclerosis phenotype is closely related to aging, it is reasonable to believe that coenzyme Q10 supplementation could be beneficial for both conditions.


Assuntos
Aterosclerose/tratamento farmacológico , Suplementos Nutricionais , Ubiquinona/análogos & derivados , Vitaminas/uso terapêutico , Humanos , Ubiquinona/uso terapêutico
4.
Neural Regen Res ; 14(7): 1177-1185, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30804242

RESUMO

Neurodegeneration with brain iron accumulation is a broad term that describes a heterogeneous group of progressive and invalidating neurologic disorders in which iron deposits in certain brain areas, mainly the basal ganglia. The predominant clinical symptoms include spasticity, progressive dystonia, Parkinson's disease-like symptoms, neuropsychiatric alterations, and retinal degeneration. Among the neurodegeneration with brain iron accumulation disorders, the most frequent subtype is pantothenate kinase-associated neurodegeneration (PKAN) caused by defects in the gene encoding the enzyme pantothenate kinase 2 (PANK2) which catalyzed the first reaction of the coenzyme A biosynthesis pathway. Currently there is no effective treatment to prevent the inexorable course of these disorders. The aim of this review is to open up a discussion on the utility of using cellular models derived from patients as a valuable tool for the development of precision medicine in PKAN. Recently, we have described that dermal fibroblasts obtained from PKAN patients can manifest the main pathological changes of the disease such as intracellular iron accumulation accompanied by large amounts of lipofuscin granules, mitochondrial dysfunction and a pronounced increase of markers of oxidative stress. In addition, PKAN fibroblasts showed a morphological senescence-like phenotype. Interestingly, pantothenate supplementation, the substrate of the PANK2 enzyme, corrected all pathophysiological alterations in responder PKAN fibroblasts with low/residual PANK2 enzyme expression. However, pantothenate treatment had no favourable effect on PKAN fibroblasts harbouring mutations associated with the expression of a truncated/incomplete protein. The correction of pathological alterations by pantothenate in individual mutations was also verified in induced neurons obtained by direct reprograming of PKAN fibroblasts. Our observations indicate that pantothenate supplementation can increase/stabilize the expression levels of PANK2 in specific mutations. Fibroblasts and induced neurons derived from patients can provide a useful tool for recognizing PKAN patients who can respond to pantothenate treatment. The presence of low but significant PANK2 expression which can be increased in particular mutations gives valuable information which can support the treatment with high dose of pantothenate. The evaluation of personalized treatments in vitro of fibroblasts and neuronal cells derived from PKAN patients with a wide range of pharmacological options currently available, and monitoring its effect on the pathophysiological changes, can help for a better therapeutic strategy. In addition, these cell models will be also useful for testing the efficacy of new therapeutic options developed in the future.

5.
Mol Neurobiol ; 56(5): 3638-3656, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30173408

RESUMO

Neurodegeneration with brain iron accumulation (NBIA) is a group of inherited neurologic disorders in which iron accumulates in the basal ganglia resulting in progressive dystonia, spasticity, parkinsonism, neuropsychiatric abnormalities, and optic atrophy or retinal degeneration. The most prevalent form of NBIA is pantothenate kinase-associated neurodegeneration (PKAN) associated with mutations in the gene of pantothenate kinase 2 (PANK2), which is essential for coenzyme A (CoA) synthesis. There is no cure for NBIA nor is there a standard course of treatment. In the current work, we describe that fibroblasts derived from patients harbouring PANK2 mutations can reproduce many of the cellular pathological alterations found in the disease, such as intracellular iron and lipofuscin accumulation, increased oxidative stress, and mitochondrial dysfunction. Furthermore, mutant fibroblasts showed a characteristic senescent morphology. Treatment with pantothenate, the PANK2 enzyme substrate, was able to correct all pathological alterations in responder mutant fibroblasts with residual PANK2 enzyme expression. However, pantothenate had no effect on mutant fibroblasts with truncated/incomplete protein expression. The positive effect of pantothenate in particular mutations was also confirmed in induced neurons obtained by direct reprograming of mutant fibroblasts. Our results suggest that pantothenate treatment can stabilize the expression levels of PANK2 in selected mutations. These results encourage us to propose our screening model as a quick and easy way to detect pantothenate-responder patients with PANK2 mutations. The existence of residual enzyme expression in some affected individuals raises the possibility of treatment using high dose of pantothenate.


Assuntos
Ferro/metabolismo , Mutação/genética , Neurodegeneração Associada a Pantotenato-Quinase/tratamento farmacológico , Neurodegeneração Associada a Pantotenato-Quinase/genética , Ácido Pantotênico/uso terapêutico , Morte Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Coenzima A/metabolismo , Metabolismo Energético/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Fibroblastos/patologia , Fibroblastos/ultraestrutura , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Lipofuscina/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Neurodegeneração Associada a Pantotenato-Quinase/patologia , Ácido Pantotênico/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Carbonilação Proteica/efeitos dos fármacos
6.
Biochim Biophys Acta Mol Basis Dis ; 1864(12): 3697-3713, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30292637

RESUMO

Familial Hypercholesterolemia (FH) is an autosomal co-dominant genetic disorder characterized by elevated low-density lipoprotein (LDL) cholesterol levels and increased risk for premature cardiovascular disease. Here, we examined FH pathophysiology in skin fibroblasts derived from FH patients harboring heterozygous mutations in the LDL-receptor. Fibroblasts from FH patients showed a reduced LDL-uptake associated with increased intracellular cholesterol levels and coenzyme Q10 (CoQ10) deficiency, suggesting dysregulation of the mevalonate pathway. Secondary CoQ10 deficiency was associated with mitochondrial depolarization and mitophagy activation in FH fibroblasts. Persistent mitophagy altered autophagy flux and induced inflammasome activation accompanied by increased production of cytokines by mutant cells. All the pathological alterations in FH fibroblasts were also reproduced in a human endothelial cell line by LDL-receptor gene silencing. Both increased intracellular cholesterol and mitochondrial dysfunction in FH fibroblasts were partially restored by CoQ10 supplementation. Dysregulated mevalonate pathway in FH, including increased expression of cholesterogenic enzymes and decreased expression of CoQ10 biosynthetic enzymes, was also corrected by CoQ10 treatment. Reduced CoQ10 content and mitochondrial dysfunction may play an important role in the pathophysiology of early atherosclerosis in FH. The diagnosis of CoQ10 deficiency and mitochondrial impairment in FH patients may also be important to establish early treatment with CoQ10.


Assuntos
Ataxia/complicações , Colesterol/metabolismo , Fibroblastos/patologia , Hiperlipoproteinemia Tipo II/complicações , Doenças Mitocondriais/complicações , Debilidade Muscular/complicações , Ubiquinona/deficiência , Ataxia/metabolismo , Ataxia/patologia , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Hiperlipoproteinemia Tipo II/metabolismo , Hiperlipoproteinemia Tipo II/patologia , Lipoproteínas LDL/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Mitofagia , Debilidade Muscular/metabolismo , Debilidade Muscular/patologia , Espécies Reativas de Oxigênio/metabolismo , Receptores de LDL/metabolismo , Ubiquinona/metabolismo
7.
Orphanet J Rare Dis ; 12(1): 23, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28166796

RESUMO

BACKGROUND: Gaucher disease (GD) is caused by mutations in the GBA1 gene which encodes lysosomal ß-glucocerebrosidase (GCase). In GD, partial or complete loss of GCase activity causes the accumulation of the glycolipids glucosylceramide (GlcCer) and glucosylsphingosine in the lysosomes of macrophages. In this manuscript, we investigated the effects of glycolipids accumulation on lysosomal and mitochondrial function, inflammasome activation and efferocytosis capacity in a THP-1 macrophage model of Gaucher disease. In addition, the beneficial effects of coenzyme Q10 (CoQ) supplementation on cellular alterations were evaluated. Chemically-induced Gaucher macrophages were developed by differentiateing THP-1 monocytes to macrophages by treatment with phorbol 12-myristate 13-acetate (PMA) and then inhibiting intracellular GCase with conduritol B-epoxide (CBE), a specific irreversible inhibitor of GCase activity, and supplementing the medium with exogenous GlcCer. This cell model accumulated up to 16-fold more GlcCer compared with control THP-1 cells. RESULTS: Chemically-induced Gaucher macrophages showed impaired autophagy flux associated with mitochondrial dysfunction and increased oxidative stress, inflammasome activation and impaired efferocytosis. All abnormalities were partially restored by supplementation with CoQ. CONCLUSION: These data suggest that targeting mitochondria function and oxidative stress by CoQ can ameliorate the pathological phenotype of Gaucher cells. Chemically-induced Gaucher macrophages provide cellular models that can be used to investigate disease pathogenesis and explore new therapeutics for GD.


Assuntos
Doença de Gaucher/metabolismo , Macrófagos/efeitos dos fármacos , Ubiquinona/análogos & derivados , Glucosilceramidase , Humanos , Inflamassomos , Lisossomos , Mitofagia/efeitos dos fármacos , Mitofagia/fisiologia , Espécies Reativas de Oxigênio , Células THP-1/efeitos dos fármacos , Células THP-1/metabolismo , Ubiquinona/administração & dosagem , Ubiquinona/farmacologia
8.
Exp Suppl ; 107: 45-71, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27812976

RESUMO

In eukaryotic cells, AMP-activated protein kinase (AMPK) generally promotes catabolic pathways that produce ATP and at the same time inhibits anabolic pathways involved in different processes that consume ATP. As an energy sensor, AMPK is involved in the main cellular functions implicated in cell fate, such as cell growth and autophagy.Recently, AMPK has been connected with apoptosis regulation, although the molecular mechanism by which AMPK induces and/or inhibits cell death is not clear.This chapter reviews the essential role of AMPK in signaling pathways that respond to cellular stress and damage, highlighting the complex and reciprocal regulation between AMPK and their targets and effectors. The therapeutic implications of the role of AMPK in different pathologies such as diabetes, cancer, or mitochondrial dysfunctions are still controversial, and it is necessary to further investigate the molecular mechanisms underlying AMPK activation.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Apoptose/genética , Autofagia/genética , Metabolismo Energético/genética , Células Eucarióticas/enzimologia , Regulação da Expressão Gênica , Proteínas Quinases Ativadas por AMP/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Proliferação de Células , Células Eucarióticas/citologia , Ácidos Graxos/metabolismo , Glucose/metabolismo , Humanos , Lipogênese/genética , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Resposta a Proteínas não Dobradas/genética
9.
Sci Rep ; 5: 10903, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-26045184

RESUMO

Gaucher disease (GD) is caused by mutations in the GBA1 gene, which encodes lysosomal ß-glucocerebrosidase. Homozygosity for the L444P mutation in GBA1 is associated with high risk of neurological manifestations which are not improved by enzyme replacement therapy. Alternatively, pharmacological chaperones (PCs) capable of restoring the correct folding and trafficking of the mutant enzyme represent promising alternative therapies.Here, we report on how the L444P mutation affects mitochondrial function in primary fibroblast derived from GD patients. Mitochondrial dysfunction was associated with reduced mitochondrial membrane potential, increased reactive oxygen species (ROS), mitophagy activation and impaired autophagic flux.Both abnormalities, mitochondrial dysfunction and deficient ß-glucocerebrosidase activity, were partially restored by supplementation with coenzyme Q10 (CoQ) or a L-idonojirimycin derivative, N-[N'-(4-adamantan-1-ylcarboxamidobutyl)thiocarbamoyl]-1,6-anhydro-L-idonojirimycin (NAdBT-AIJ), and more markedly by the combination of both treatments. These data suggest that targeting both mitochondria function by CoQ and protein misfolding by PCs can be promising therapies in neurological forms of GD.


Assuntos
Inibidores Enzimáticos/farmacologia , Doença de Gaucher/metabolismo , Glucosilceramidase/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ubiquinona/análogos & derivados , Autofagia/efeitos dos fármacos , Autofagia/genética , Biomarcadores , Ativação Enzimática , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Expressão Gênica , Glucosilceramidase/genética , Humanos , Mutação , Fagossomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ubiquinona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA