Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 3050, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031427

RESUMO

Clathrin-mediated endocytosis (CME) is the gatekeeper of the plasma membrane. In contrast to animals and yeasts, CME in plants depends on the TPLATE complex (TPC), an evolutionary ancient adaptor complex. However, the mechanistic contribution of the individual TPC subunits to plant CME remains elusive. In this study, we used a multidisciplinary approach to elucidate the structural and functional roles of the evolutionary conserved N-terminal Eps15 homology (EH) domains of the TPC subunit AtEH1/Pan1. By integrating high-resolution structural information obtained by X-ray crystallography and NMR spectroscopy with all-atom molecular dynamics simulations, we provide structural insight into the function of both EH domains. Both domains bind phosphatidic acid with a different strength, and only the second domain binds phosphatidylinositol 4,5-bisphosphate. Unbiased peptidome profiling by mass-spectrometry revealed that the first EH domain preferentially interacts with the double N-terminal NPF motif of a previously unidentified TPC interactor, the integral membrane protein Secretory Carrier Membrane Protein 5 (SCAMP5). Furthermore, we show that AtEH/Pan1 proteins control the internalization of SCAMP5 via this double NPF peptide interaction motif. Collectively, our structural and functional studies reveal distinct but complementary roles of the EH domains of AtEH/Pan1 in plant CME and connect the internalization of SCAMP5 to the TPLATE complex.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas de Ligação ao Cálcio/química , Endocitose , Proteínas de Plantas/química , Ligação Proteica , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Arabidopsis , Proteínas de Ligação ao Cálcio/genética , Membrana Celular/metabolismo , Cristalografia por Raios X , Proteínas de Membrana/química , Simulação de Dinâmica Molecular , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Domínios Proteicos , Transporte Proteico , Alinhamento de Sequência , Nicotiana/genética
2.
Chemosphere ; 253: 126684, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32464772

RESUMO

The use of Fusarium solani fungi in an expanded perlite packed biofilter was investigated for the treatment of a hexane polluted waste gas stream using selected ion flow tube mass spectrometry (SIFT-MS). The latter analytical technique proved to be of utmost importance to evaluate the performance of the biofilter at high time resolution (seconds) under various transient conditions, analogous to industrial situations. The biofilter was operational for 277 days with inlet loads varying between 1 and 14 g m-3 h-1 and applying an empty bed residence time of 116 s. The results showed a positive behaviour of the biofilter against different types of disruptions such as: (i) changes in the relative humidity of the inlet gas, (ii) stopping the carbon supply for 1, 5 and 10 days, (iii) varying the inlet hexane concentration (step increases and intermittent pulses) and (iv) limiting the availability of nutrients. X-ray imaging (both conventional 2D µCT and X-ray fluorescence, XRF) was applied for the first time on biofilter media in order to get insight in the internal structure of expanded perlite and to visualise the biomass growth. The latter in combination with online porosity measurements using SIFT-MS provides fundamental information regarding the biofiltration process.


Assuntos
Óxido de Alumínio , Poluentes Ambientais/isolamento & purificação , Filtração/métodos , Fungos , Hexanos/isolamento & purificação , Dióxido de Silício , Poluentes Atmosféricos/isolamento & purificação , Biodegradação Ambiental , Biomassa , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Análise Espectral/métodos
3.
Anal Chim Acta ; 1106: 22-32, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32145852

RESUMO

Analytical capabilities of Nanoscopic Secondary Ion Mass Spectrometry (nano-SIMS) and Synchrotron Radiation based X-ray Fluorescence (SR nano-XRF) techniques were compared for nanochemical imaging of polymorphonuclear human neutrophils (PMNs). PMNs were high pressure frozen (HPF), cryo-substituted, embedded in Spurr's resin and cut in thin sections (500 nm and 2 µm for both techniques resp.) Nano-SIMS enabled nanoscale mapping of isotopes of C, N, O, P and S, while SR based nano-XRF enabled trace level imaging of metals like Ca, Mn, Fe, Ni, Cu and Zn at a resolution of approx. 50 nm. The obtained elemental distributions were compared with those of whole, cryofrozen PMNs measured at the newly developed ID16A nano-imaging beamline at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. Similarities were observed for elements more tightly bound to the cell structure such as phosphorus and sulphur, while differences for mobile ions such as chlorine and potassium were more pronounced. Due to the observed elemental redistribution of mobile ions such as potassium and chlorine, elemental analysis of high pressure frozen (HPF), cryo-substituted and imbedded cells should be interpreted critically. Although decreasing analytical sensitivity occurs due to the presence of ice, analysis of cryofrozen cells - close to their native state - remains the golden standard. In general, we found nanoscale secondary ion mass spectrometry (nano-SIMS) and synchrotron radiation based nanoscopic X-ray fluorescence (SR nano-XRF) to be two supplementary alternatives for nanochemical imaging of single cells at the nanoscale.


Assuntos
Neutrófilos/citologia , Imagem Óptica , Análise de Célula Única , Espectrometria de Massa de Íon Secundário , Síncrotrons , Humanos , Tamanho da Partícula , Espectrometria por Raios X , Propriedades de Superfície
4.
J Pharm Biomed Anal ; 131: 256-262, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27611097

RESUMO

There is increasing interest in the treatment of advanced stage ovarian cancer (OC) using intraperitoneal (IP) delivery of platinum (Pt)-based chemotherapy. The antitumor efficacy of IP chemotherapy is determined by efficient tumor tissue penetration. Although it is assumed that Pt penetration is limited to a few millimeters after IP delivery, little is known on the distribution of Pt in different tumor compartments at the ultrastructural level following IP administration. Here, using synchrotron radiation X-ray fluorescence spectrometry (SR-XRF) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), Pt distribution and penetration in OC peritoneal xenografts were determined at nanometer scale after IP chemoperfusion of cisplatin at 37-38°C or 40-41°C (hyperthermic). Using principal component analysis (PCA) the presence of phosphorus, manganese, calcium, zinc, iron, bromine, and sulfur was correlated with the distribution of Pt, while k-means analysis was used to quantify the amount of Pt in weight% in tumor stroma and in tumor cells. The results showed a heterogeneous distribution of Pt throughout the tumor, with an accumulation in the extracellular matrix. LA-ICP-MS mappings indicated significantly higher concentrations of Pt (P=0.0062) after hyperthermic chemoperfusion of cisplatin, while SR-XRF demonstrated a deeper tissue Pt penetration after hyperthermic treatment. Using PCA, it was showed that Pt co-localizes with bromine and sulfur. No differences were observed in Pt distribution regarding tumor cells and stroma, when comparing normo- vs. hyperthermic treatment. In conclusion, SR-XRF and LA-ICP-MS are suitable and highly sensitive techniques to analyze the penetration depth and distribution of Pt-based drugs after IP administration. To the best of our knowledge, this is the first experiment in which the distribution of Pt is analyzed at the cellular level after IP administration of cisplatin.


Assuntos
Neoplasias Ovarianas/ultraestrutura , Platina/farmacocinética , Animais , Cálcio/farmacocinética , Cisplatino/farmacocinética , Cobre/farmacocinética , Modelos Animais de Doenças , Feminino , Febre/metabolismo , Xenoenxertos/metabolismo , Xenoenxertos/ultraestrutura , Injeções Intraperitoneais , Espectrometria de Massas/métodos , Camundongos , Neoplasias Ovarianas/metabolismo , Fósforo/farmacocinética , Espectrometria por Raios X/métodos , Enxofre/farmacocinética , Distribuição Tecidual , Zinco/farmacocinética
5.
Anal Bioanal Chem ; 407(22): 6619-25, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26084548

RESUMO

After internal contamination, uranium rapidly distributes in the body; up to 20 % of the initial dose is retained in the skeleton, where it remains for years. Several studies suggest that uranium has a deleterious effect on the bone cell system, but little is known regarding the mechanisms leading to accumulation of uranium in bone tissue. We have performed synchrotron radiation-based micro-X-ray fluorescence (SR µ-XRF) studies to assess the initial distribution of uranium within cortical and trabecular bones in contaminated rats' femurs at the micrometer scale. This sensitive technique with high spatial resolution is the only method available that can be successfully applied, given the small amount of uranium in bone tissue. Uranium was found preferentially located in calcifying zones in exposed rats and rapidly accumulates in the endosteal and periosteal area of femoral metaphyses, in calcifying cartilage and in recently formed bone tissue along trabecular bone. Furthermore, specific localized areas with high accumulation of uranium were observed in regions identified as micro-vessels and on bone trabeculae. These observations are of high importance in the study of the accumulation of uranium in bone tissue, as the generally proposed passive chemical sorption on the surface of the inorganic part (apatite) of bone tissue cannot account for these results. Our study opens original perspectives in the field of exogenous metal bio-mineralization.


Assuntos
Fêmur/metabolismo , Exposição à Radiação/análise , Espectrometria por Raios X/métodos , Urânio/farmacocinética , Absorção de Radiação/fisiologia , Animais , Fêmur/química , Fêmur/citologia , Técnicas In Vitro , Masculino , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual , Urânio/análise
6.
Anal Chim Acta ; 664(1): 19-26, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20226927

RESUMO

Visualization of elemental distributions in thin sections of biological tissue is gaining importance in many disciplines of biological and medical research. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and scanning micro-X-ray fluorescence spectrometry (micro-XRF) are two widely used microanalytical techniques for elemental mapping. This article compares the capabilities of the two techniques for imaging the distribution of selected elements in the model organism Daphnia magna in terms of detection power and spatial resolution. Sections with a thickness of 10 and 20 microm of the fresh water crustacean Daphnia magna were subjected to LA-ICP-MS and micro-XRF analysis. The elemental distributions obtained for Ca, P, S and Zn allow element-to-tissue correlation. LA-ICP-MS and micro-XRF offer similar limits of detection for the elements Ca and P and thus, allow a cross-validation of the imaging results. LA-ICP-MS was particularly sensitive for determining Zn (LOD 20 microg g(-1), 15 microm spot size) in Daphnia magna, while the detection power of micro-XRF was insufficient in this context. However, LA-ICP-MS was inadequate for the measurement of the S distributions, which could be better visualized with micro-XRF (LOD 160 microg g(-1), 5 s live time). Both techniques are thus complementary in providing an exhaustive chemical profiling of tissue samples.


Assuntos
Daphnia/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria por Raios X/métodos , Animais , Cálcio/análise , Lasers , Fósforo/análise , Zinco/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA