RESUMO
A static headspace gas chromatography - mass spectrometry (HS-GC/MS) method was developed and optimized with the aim to be applied in the analysis of lavender essential oil. To obtain a comprehensive profile of the essential oil, the optimum HS-GC/MS method parameters were selected based on a Design of Experiments (DοE) process. Plackett-Burman experimental design was applied by utilizing seven parameters of the HS injection system. Incubation equilibration temperature and time, agitator's vortex speed, post injection dwell time, inlet temperature, split ratio and injection flow rate were screened to select the optimum conditions on the basis of the number and the intensity of the identified compounds. Other parameters, such as sample volume and dilution solvent ratio, were also examined to achieve a comprehensive profile in a chromatographic run of 55 min. With the obtained optimum method, more than 40 volatile compounds were identified in lavender's essential oils from different geographical regions in Greece. The method can be utilized for the quality assessment of lavender's essential oil and provide information on its characteristic aroma and discrimination among species based on the acquired GC-MS profiles.
Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Lavandula/química , Óleos Voláteis , Óleos de Plantas , Grécia , Modelos Lineares , Odorantes/análise , Óleos Voláteis/análise , Óleos Voláteis/química , Óleos Voláteis/classificação , Óleos de Plantas/análise , Óleos de Plantas/química , Óleos de Plantas/classificação , Projetos de PesquisaRESUMO
Preterm delivery (PTD) represents a major health problem that occurs in 1 in 10 births. The hypothesis of the present study was that the metabolic profile of different biological fluids, obtained from pregnant women during the second trimester of gestation, could allow useful correlations with pregnancy outcome. Holistic and targeted metabolomics approaches were applied for the complementary assessment of the metabolic content of prospectively collected amniotic fluid (AF) and paired maternal blood serum samples from 35 women who delivered preterm (between 29 weeks + 0 days and 36 weeks +5 days gestation) and 35 women delivered at term. The results revealed trends relating the metabolic content of the analyzed samples with preterm delivery. Untargeted and targeted profiling showed differentiations in certain key metabolites in the biological fluids of the two study groups. In AF, intermediate metabolites involved in energy metabolism (pyruvic acid, glutamic acid, and glutamine) were found to contribute to the classification of the two groups. In maternal serum, increased levels of lipids and alterations of key end-point metabolites were observed in cases of preterm delivery. Overall, the metabolic content of second-trimester AF and maternal blood serum shows potential for the identification of biomarkers related to fetal growth and preterm delivery.