Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(14): 41900-41909, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36639586

RESUMO

Dietary exposure of selected Hofmeister ions-fluoride, chloride, sulfate, phosphate, sodium, potassium, magnesium, and calcium from black tea consumption in chronic kidney disease of unknown etiology (CKDu) prevalent areas in Sri Lanka-were assessed in order to understand exposure and risk. Black tea samples (n = 25) were collected from CKDu prevalent areas and control areas (n = 15). Total fluoride content in alkali fused digested black tea samples was determined. The available Hofmeister ions in tea infusions prepared using deionized water and the groundwater collected by CKDu endemic areas were compared. Dietary exposure was calculated by chronic daily intake data. Total fluoride concentrations ranged from 80 to 269 mg/kg in tea collected from the CKDu endemic regions and 62.5-123.5 mg/kg in non-endemic regions. The fluoride content in infusions ranged from 1.45 to 2.04 mg/L in CKDu endemic areas and 1.11-1.38 mg/L in control samples. The infusions prepared with local groundwater from the CKDu endemic areas showed an elevated level of fluoride 95% than that of the infusion prepared using same tea with deionized water. Aggregated chronic daily intake value from tea and groundwater exceeds the estimated adequate daily intake value of fluoride. The hazard quotient (HQ) values of fluoride in 5 min and 120 min tea infusions were 1.60 and 2.20, respectively, and indicate an adverse health risk. Potassium content in tea infusions collected from CKDu endemic areas is higher than in the control. Even though these values are less than the adequate intake, it may pose an impairment on a weak kidney. Chronic daily intake of Hofmeister ions, i.e., fluoride and potassium from black tea consumed in CKDu endemic areas may induce a risk for CKDu.


Assuntos
Fluoretos , Insuficiência Renal Crônica , Humanos , Fluoretos/análise , Chá , Sri Lanka/epidemiologia , Insuficiência Renal Crônica/epidemiologia , Água , Doenças Renais Crônicas Idiopáticas , Potássio
2.
Environ Pollut ; 293: 118564, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34838711

RESUMO

Land application of sewage sludge is increasingly used as an alternative to landfilling and incineration owing to a considerable content of carbon and essential plant nutrients in sewage sludge. However, the presence of chemical and biological contaminants in sewage sludge poses potential dangers; therefore, sewage sludge must be suitably treated before being applied to soils. The most common methods include anaerobic digestion, aerobic composting, lime stabilization, incineration, and pyrolysis. These methods aim at stabilizing sewage sludge, to eliminate its potential environmental pollution and restore its agronomic value. To achieve best results on land, a comprehensive understanding of the transformation of organic matter, nutrients, and contaminants during these sewage-sludge treatments is essential; however, this information is still lacking. This review aims to fill this knowledge gap by presenting various approaches to treat sewage sludge, transformation processes of some major nutrients and pollutants during treatment, and potential impacts on soils. Despite these treatments, overtime there are still some potential risks of land application of treated sewage sludge. Potentially toxic substances remain the main concern regarding the reuse of treated sewage sludge on land. Therefore, further treatment may be applied, and long-term field studies are warranted, to prevent possible adverse effects of treated sewage sludge on the ecosystem and human health and enable its land application.


Assuntos
Ecossistema , Esgotos , Poluição Ambiental , Humanos , Incineração , Solo
3.
Chemosphere ; 288(Pt 2): 132551, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34655645

RESUMO

Biochar has widely been utilized as an agricultural soil amendment owing to its enhanced surface properties and cost-effectiveness. In the present work, the influence of tea waste biochar (TWBC) upon acid modification on Allium cepa L. (red onion) growth has been studied. Its effect as a soil amendment has also been studied by assessing the nutrient retention, microbial population growth and immobilization of potentially toxic metal ions. A greenhouse experiment was carried out by applying different biochar (BC) ratios (2% and 5% w/w) to soil as the growth media for onion plants. A 2.4 times (2.4 × ) reduction of phosphate from leaching was observed upon BC application at a ratio of 2% than that of 5%. Moreover, red onion plants that grew in the BC-fertilizer amended soil at a 2% ratio showed higher growth compared to that of 5%. A ∼1.3 × and ∼1.2 × increment of total dry weight was observed upon amendment of soil fertilizer system with nitric and sulfuric acid-modified TWBC, respectively. An analysis of the potentially toxic metal ion uptake by the respective plant parts showed that lead uptake by the roots of red onion was ∼8.3 × less in BC amended soil compared to that in contaminated soil. Thus, acid-modified TWBC can be considered a potential soil amendment for an enhanced red onion growth. Employing TWBC as a soil amendment in tropical countries, where tea-waste is in abundance, will boost sustainable agriculture.


Assuntos
Cebolas , Chá , Carvão Vegetal
4.
J Hazard Mater ; 416: 125702, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33866291

RESUMO

The term "Total petroleum hydrocarbons" (TPH) is used to describe a complex mixture of petroleum-based hydrocarbons primarily derived from crude oil. Those compounds are considered as persistent organic pollutants in the terrestrial environment. A wide array of organic amendments is increasingly used for the remediation of TPH-contaminated soils. Organic amendments not only supply a source of carbon and nutrients but also add exogenous beneficial microorganisms to enhance the TPH degradation rate, thereby improving the soil health. Two fundamental approaches can be contemplated within the context of remediation of TPH-contaminated soils using organic amendments: (i) enhanced TPH sorption to the exogenous organic matter (immobilization) as it reduces the bioavailability of the contaminants, and (ii) increasing the solubility of the contaminants by supplying desorbing agents (mobilization) for enhancing the subsequent biodegradation. Net immobilization and mobilization of TPH have both been observed following the application of organic amendments to contaminated soils. This review examines the mechanisms for the enhanced remediation of TPH-contaminated soils by organic amendments and discusses the influencing factors in relation to sequestration, bioavailability, and subsequent biodegradation of TPH in soils. The uncertainty of mechanisms for various organic amendments in TPH remediation processes remains a critical area of future research.


Assuntos
Petróleo , Poluentes do Solo , Biodegradação Ambiental , Hidrocarbonetos , Solo , Microbiologia do Solo , Poluentes do Solo/análise
5.
J Environ Manage ; 283: 111989, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33516097

RESUMO

Experimental and computational investigations have been conducted in this study to assess the influence of municipal waste pyrolyzed biochar impregnated clay composites on antibiotic removal as a material for wastewater treatment and simultaneous value-addition for waste. The surface potential (zeta potential) of the pristine biochar and composite samples are found to be within the range ~10 to ~ -40 mV in the pH range 2-10. The presence of different inorganic salt solutions influences the electrophoretic mobility of the dispersed phase in a suspension, as well as its zeta potential. In addition of Na+ salt solutions, the Na+ ions undergo electrostatic interaction with the negatively charged biochar samples and form a double layer at the interface of biochar and ionic salt solution. Molecular dynamics simulations have been employed to understand experimental findings, ions adsorption and solute-solvent interactions at the molecular level of two biochar B7 (seven benzene rings, one methoxy, one aldehyde and two hydroxyls groups) and B17 (seventeen benzene rings, one methoxy, two hydroxyls and two carboxylic acid groups) in salts aqueous solutions. The results confirm that hydroxyls and carboxylate groups of biochar are responsible for solute-solvent interactions. Successful removal of tetracycline antibiotics is observed with 26 mg/g maximum adsorption capacity with montmorillonite biochar composite. This study confirms that interactions between amide and hydroxyl groups of tetracycline with hydroxyl and carboxylate groups of biochar play the key role in the adsorption process. The solution pH and presence of different background electrolytes effectively influence the process of solute-solvent interactions as well as adsorption efficacy towards tetracycline adsorption.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Antibacterianos , Carvão Vegetal , Argila , Concentração de Íons de Hidrogênio , Íons , Cinética , Solventes , Tetraciclina/análise , Poluentes Químicos da Água/análise
6.
J Hazard Mater ; 383: 121125, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31541959

RESUMO

Contaminant removal from water involves various technologies among which adsorption is considered to be simple, effective, economical, and sustainable. In recent years, nanocomposites prepared by combining clay minerals and polymers have emerged as a novel technology for cleaning contaminated water. Here, we provide an overview of various types of clay-polymer nanocomposites focusing on their synthesis processes, characteristics, and possible applications in water treatment. By evaluating various mechanisms and factors involved in the decontamination processes, we demonstrate that the nanocomposites can overcome the limitations of individual polymer and clay components such as poor specificity, pH dependence, particle size sensitivity, and low water wettability. We also discuss different regeneration and wastewater treatment options (e.g., membrane, coagulant, and barrier/columns) using clay-polymer nanocomposites. Finally, we provide an economic analysis of the use of these adsorbents and suggest future research directions.

7.
Environ Geochem Health ; 39(6): 1501-1511, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28551882

RESUMO

This study assesses the distribution of goiter in the Kalutara District, Sri Lanka in order to find causative factors for the occurrence of goiter even after the salt iodization. A questionnaire survey was conducted at the household level and at the same time iodine and selenium levels of the water sources were analyzed. Questionnaire survey results indicated the highest numbers of goiter patients in the northern part where the lowest were found in the southern sector which may be due to the presence of acid sulfate soils. Females were more susceptible and it even showed a transmittance between generations. Average iodine concentrations in subsurface water of goiter endemic regions are 28.25 ± 15.47 µg/L whereas non-goiter regions show identical values at 24.74 ± 18.29 µg/L. Surface water exhibited relatively high values at 30.87 ± 16.13 µg/L. Endemic goiter was reported in some isolated patches where iodine and selenium concentrations low, latter was <10 µg/L. The formation of acid sulfate soils in the marshy lands in Kalutara district may lead to transformation of biological available iodine oxidation into volatile iodine by humic substances, at the same time organic matter rich peaty soil may have strong held of iodine and selenium which again induced by low pH and high temperature were suggested as the instrumental factors in the endemic goiter in Kalutara district. Hence, geochemical features such as soil pH, organic matter and thick lateritic cap in the Kalutara goiter endemic area play a role in controlling the available selenium and iodine for food chain through plant uptake and in water.


Assuntos
Doenças Endêmicas , Bócio/etiologia , Solo/química , Adulto , Idoso , Feminino , Cadeia Alimentar , Bócio/epidemiologia , Temperatura Alta , Humanos , Substâncias Húmicas/análise , Concentração de Íons de Hidrogênio , Iodo/análise , Masculino , Pessoa de Meia-Idade , Oxirredução , Fatores de Risco , Selênio/análise , Sri Lanka/epidemiologia , Inquéritos e Questionários , Água/química
8.
Sci Total Environ ; 581-582: 87-104, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28062106

RESUMO

Exposure to geogenic contaminants (GCs) such as metal(loid)s, radioactive metals and isotopes as well as transuraniums occurring naturally in geogenic sources (rocks, minerals) can negatively impact on environmental and human health. The GCs are released into the environment by natural biogeochemical processes within the near-surface environments and/or by anthropogenic activities such as mining and hydrocarbon exploitation as well as exploitation of geothermal resources. They can contaminate soil, water, air and biota and subsequently enter the food chain with often serious health impacts which are mostly underestimated and poorly recognized. Global population explosion and economic growth and the associated increase in demand for water, energy, food, and mineral resources result in accelerated release of GCs globally. The emerging science of "medical geology" assesses the complex relationships between geo-environmental factors and their impacts on humans and environments and is related to the majority of the 17 Sustainable Development Goals in the 2030 Agenda of the United Nations for Sustainable Development. In this paper, we identify multiple lines of evidence for the role of GCs in the incidence of diseases with as yet unknown etiology (causation). Integrated medical geology promises a more holistic understanding of the occurrence, mobility, bioavailability, bio-accessibility, exposure and transfer mechanisms of GCs to the food-chain and humans, and the related ecotoxicological impacts and health effects. Scientific evidence based on this approach will support adaptive solutions for prevention, preparedness and response regarding human and environmental health impacts originating from exposure to GCs.


Assuntos
Poluentes Ambientais , Geologia , Saúde Pública , Conservação dos Recursos Naturais , Objetivos , Humanos , Metaloides , Metais , Nações Unidas
9.
J Environ Manage ; 186(Pt 2): 293-300, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27527669

RESUMO

This study assesses the effect of N-fixing bacteria and biochar synergism on plant growth and development of Vigna mungo under heavy metal stress (HM). Heavy metal stress is a worldwide problem, which causes critical effects on plant life due to oxidative stress. Application of biochar is a recent biological remediation technique, which often leads to an immobilization of heavy metals in soil. . Synergism of bacteria and biochar is a novel aspect to enhance plant growth under heavy metal stress. Woody biochar a byproduct of a dendro power industry was added as 1, 2.5 and 5% amounts combination with Bradyrhizobium japonicum, where mung seedlings were planted in serpentine soil rich in Ni, Mn, Cr and Co. Pot experiments were conducted for 12 weeks. The plant height, heavy metal uptake by plants, soil bioavailable heavy metal contents, soil N and P and microbial biomass carbon (MBC) were measured. The plant growth was enhanced with biochar amendment but a retardation was observed with high biochar application (5%). The soil N and P increased with the increase of biochar addition percentage while soil MBC showed reductions at 5% biochar amendment. Both soil bioavailable fractions of HM and up take of HMs by plants were gradually reduced with increase in biochar content. Based on the results, 2.5% biochar synergism with bacteria was the best for plant growth and soil nutrition status. Despite the synergism, available N was negatively correlated with the decrease of bioavailable metal percentage in soil whereas it was conversely for P.


Assuntos
Bradyrhizobium/fisiologia , Carvão Vegetal , Metais Pesados/toxicidade , Poluentes do Solo/toxicidade , Vigna/efeitos dos fármacos , Disponibilidade Biológica , Biomassa , Carbono/análise , Metais Pesados/análise , Metais Pesados/farmacocinética , Nitrogênio/metabolismo , Fixação de Nitrogênio , Fósforo/metabolismo , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/farmacocinética , Sri Lanka , Vigna/crescimento & desenvolvimento
10.
Chemosphere ; 150: 781-789, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26607239

RESUMO

This study reports the thermodynamic application and non-linear kinetic models in order to postulate the mechanisms and compare the carbofuran adsorption behavior onto rice husk and tea waste derived biochars. Locally available rice husk and infused tea waste biochars were produced at 700 °C. Biochars were characterized by using proximate, ultimate and surface characterization methods. Batch experiments were conducted at 25, 35, and 45 °C for a series of carbofuran solutions ranging from 5 to 100 mg L(-1) with a biochar dose of 1 g L(-1) at pH 5.0 with acetate buffer. Molar O/C ratios indicated that rice husk biochar (RHBC700) is more hydrophilic than tea waste biochar (TWBC700). Negative ΔG (Gibbs free energy change) values indicated the feasibility of carbofuran adsorption on biochar. Increasing ΔG values with the rise in temperature indicated high favorability at higher temperatures for both RHBC and TWBC. Enthalpy values suggested the involvement of physisorption type interactions. Kinetic data modeling exhibited contribution of both physisorption, via pore diffusion, π*-π electron donor-acceptor interaction, H-bonding, and van der Waals dispersion forces and chemisorption via chemical bonding with phenolic, and amine groups. Equilibrium adsorption capacities of RHBC and TWBC determined by pseudo second order kinetic model were 25.2 and 10.2 mg g(-1), respectively.


Assuntos
Camellia sinensis/química , Carbofurano/química , Carvão Vegetal/química , Oryza/química , Adsorção , Cinética , Temperatura , Termodinâmica , Resíduos/análise , Poluentes Químicos da Água/química
11.
Environ Geochem Health ; 37(6): 931-42, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25794596

RESUMO

High concentration of toxic metals in military shooting range soils poses a significant environmental concern due to the potential release of metals, such as Pb, Cu, and Sb, and hence requires remediation. The current study examined the effectiveness of buffalo weed (Ambrosia trifida L.) biomass and its derived biochars at pyrolytic temperatures of 300 and 700 °C, natural iron oxides (NRE), gibbsite, and silver nanoparticles on metal immobilization together with soil quality after 1-year soil incubation. Destructive (e.g., chemical extractions) and non-destructive (e.g., molecular spectroscopy) methods were used to investigate the immobilization efficacy of each amendment on Pb, Cu, and Sb, and to explore the possible immobilization mechanisms. The highest immobilization efficacy was observed with biochar produced at 300 °C, showing the maximum decreases of bioavailability by 94 and 70% for Pb and Cu, respectively, which were attributed to the abundance of functional groups in the biochar. Biochar significantly increased the soil pH, cation exchange capacity, and P contents. Indeed, the scanning electron microscopic elemental dot mapping and X-ray absorption fine structure spectroscopic (EXAFS) studies revealed associations of Pb with P (i.e., the formation of stable chloropyromorphite [Pb5(PO4)3Cl]) in the biomass- or biochar-amended soils. However, no amendment was effective on Sb immobilization.


Assuntos
Carvão Vegetal/química , Cobre/análise , Recuperação e Remediação Ambiental , Compostos Férricos/química , Nanoestruturas/química , Poluentes do Solo/análise , Solo/química , Ambrosia/química , Antimônio/análise , Antimônio/química , Biomassa , Cobre/química , Chumbo/análise , Chumbo/química , Minerais/química , Fosfatos/química , Fósforo/química , Poluentes do Solo/química
12.
Bioresour Technol ; 166: 303-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24926603

RESUMO

Sulfamethazine (SMT) as a veterinary drug has been detected frequently in the environment. In this study, six biochars produced from tea waste (TW) at 300 and 700 °C with or without N2 and steam activation were characterized and evaluated for SMT sorption in water. The sorption of SMT was interpreted as a function of biochar production condition, SMT concentration, pH and physicochemical characteristics of biochar. Distribution coefficient data showed high sorption of SMT at low pH (∼3) and the highest sorption density of 33.81 mg g(-1) was achieved by the steam activated biochar produced at 700 °C. The steam activation process increased the adsorption capacity by increasing the surface area of the biochar. The π-π electron donor-acceptor interaction, cation-π interaction and cation exchange at low pH were the primary mechanisms governing SMT retention by biochars. Overall, steam activated tea waste biochar could be a promising remedy of SMT removal from water.


Assuntos
Carvão Vegetal/química , Temperatura Alta , Sulfametazina/química , Chá/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Modelos Estatísticos , Espectroscopia de Infravermelho com Transformada de Fourier , Vapor , Sulfametazina/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA