Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 320(6): E1119-E1137, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33938234

RESUMO

Global prevalence of type 2 diabetes (T2D) is rising and may affect 700 million people by 2045. Totum-63 is a polyphenol-rich natural composition developed to reduce the risk of T2D. We first investigated the effects of Totum-63 supplementation in high-fat diet (HFD)-fed mice for up to 16 wk and thereafter assessed its safety and efficacy (2.5 g or 5 g per day) in 14 overweight men [mean age 51.5 yr, body mass index (BMI) 27.6 kg·m-2] for 4 wk. In HFD-fed mice, Totum-63 reduced body weight and fat mass gain, whereas lean mass was unchanged. Moreover, fecal energy excretion was higher in Totum-63-supplemented mice, suggesting a reduction of calorie absorption in the digestive tract. In the gut, metagenomic analyses of fecal microbiota revealed a partial restoration of HFD-induced microbial imbalance, as shown by principal coordinate analysis of microbiota composition. HFD-induced increase in HOMA-IR score was delayed in supplemented mice, and insulin response to an oral glucose tolerance test was significantly reduced, suggesting that Totum-63 may prevent HFD-related impairments in glucose homeostasis. Interestingly, these improvements could be linked to restored insulin signaling in subcutaneous adipose tissue and soleus muscle. In the liver, HFD-induced steatosis was reduced by 40% (as shown by triglyceride content). In the subsequent study in men, Totum-63 (5 g·day-1) improved glucose and insulin responses to a high-carbohydrate breakfast test (84% kcal carbohydrates). It was well tolerated, with no clinically significant adverse events reported. Collectively, these data suggest that Totum-63 could improve glucose homeostasis in both HFD-fed mice and overweight individuals, presumably through a multitargeted action on different metabolic organs.NEW & NOTEWORTHY Totum-63 is a novel polyphenol-rich natural composition developed to reduce the risk of T2D. Totum-63 showed beneficial effects on glucose homeostasis in HFD-fed mice, presumably through a multitargeted action on different metabolic organs. Totum-63 was well tolerated in humans and improved postprandial glucose and insulin responses to a high-carbohydrate breakfast test.


Assuntos
Glicemia/efeitos dos fármacos , Hiperglicemia/prevenção & controle , Extratos Vegetais/farmacologia , Adulto , Animais , Glicemia/metabolismo , Chrysanthemum/química , Cynara scolymus/química , Controle Glicêmico/métodos , Homeostase/efeitos dos fármacos , Humanos , Hiperglicemia/sangue , Hiperglicemia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Olea/química , Sobrepeso/sangue , Sobrepeso/tratamento farmacológico , Sobrepeso/metabolismo , Projetos Piloto , Piper nigrum/química , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Período Pós-Prandial/efeitos dos fármacos , Pesquisa Translacional Biomédica , Vaccinium myrtillus/química
2.
Toxicol Appl Pharmacol ; 276(1): 73-81, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24534255

RESUMO

UNLABELLED: Although non-alcoholic fatty liver disease (NAFLD) is currently the most common form of chronic liver disease there is no pharmacological agent approved for its treatment. Since peroxisome proliferator-activated receptors (PPARs) are closely associated with hepatic lipid metabolism, they seem to play important roles in NAFLD. However, the effects of PPAR agonists on steatosis that is a common pathology associated with NAFLD, remain largely controversial. In this study, the effects of various PPAR agonists, i.e. fenofibrate, bezafibrate, troglitazone, rosiglitazone, muraglitazar and tesaglitazar on oleic acid-induced steatotic HepaRG cells were investigated after a single 24-hour or 2-week repeat treatment. Lipid vesicles stained by Oil-Red O and triglycerides accumulation caused by oleic acid overload, were decreased, by up to 50%, while fatty acid oxidation was induced after 2-week co-treatment with PPAR agonists. The greatest effects on reduction of steatosis were obtained with the dual PPARα/γ agonist muraglitazar. Such improvement of steatosis was associated with up-regulation of genes related to fatty acid oxidation activity and down-regulation of many genes involved in lipogenesis. Moreover, modulation of expression of some nuclear receptor genes, such as FXR, LXRα and CAR, which are potent actors in the control of lipogenesis, was observed and might explain repression of de novo lipogenesis. CONCLUSION: Altogether, our in vitro data on steatotic HepaRG cells treated with PPAR agonists correlated well with clinical investigations, bringing a proof of concept that drug-induced reversal of steatosis in human can be evaluated in in vitro before conducting long-term and costly in vivo studies in animals and patients.


Assuntos
Fígado Gorduroso/tratamento farmacológico , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipotrópicos/farmacologia , Fígado/efeitos dos fármacos , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Linhagem Celular , Receptor Constitutivo de Androstano , Avaliação Pré-Clínica de Medicamentos , Ácidos Graxos não Esterificados/efeitos adversos , Fígado Gorduroso/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glicina/análogos & derivados , Glicina/farmacologia , Humanos , Lipogênese/efeitos dos fármacos , Fígado/metabolismo , Receptores X do Fígado , Hepatopatia Gordurosa não Alcoólica , Ácido Oleico/efeitos adversos , Receptores Nucleares Órfãos/antagonistas & inibidores , Receptores Nucleares Órfãos/genética , Receptores Nucleares Órfãos/metabolismo , Oxazóis/farmacologia , Oxirredução , PPAR alfa/agonistas , PPAR alfa/metabolismo , PPAR gama/agonistas , PPAR gama/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA