Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Invest ; 127(6): 2418-2432, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28481224

RESUMO

Glucocorticoid steroids such as prednisone are prescribed for chronic muscle conditions such as Duchenne muscular dystrophy, where their use is associated with prolonged ambulation. The positive effects of chronic steroid treatment in muscular dystrophy are paradoxical because these steroids are also known to trigger muscle atrophy. Chronic steroid use usually involves once-daily dosing, although weekly dosing in children has been suggested for its reduced side effects on behavior. In this work, we tested steroid dosing in mice and found that a single pulse of glucocorticoid steroids improved sarcolemmal repair through increased expression of annexins A1 and A6, which mediate myofiber repair. This increased expression was dependent on glucocorticoid response elements upstream of annexins and was reinforced by the expression of forkhead box O1 (FOXO1). We compared weekly versus daily steroid treatment in mouse models of acute muscle injury and in muscular dystrophy and determined that both regimens provided comparable benefits in terms of annexin gene expression and muscle repair. However, daily dosing activated atrophic pathways, including F-box protein 32 (Fbxo32), which encodes atrogin-1. Conversely, weekly steroid treatment in mdx mice improved muscle function and histopathology and concomitantly induced the ergogenic transcription factor Krüppel-like factor 15 (Klf15) while decreasing Fbxo32. These findings suggest that intermittent, rather than daily, glucocorticoid steroid regimen promotes sarcolemmal repair and muscle recovery from injury while limiting atrophic remodeling.


Assuntos
Glucocorticoides/administração & dosagem , Músculo Esquelético/efeitos dos fármacos , Prednisona/administração & dosagem , Animais , Anexina A6/genética , Anexina A6/metabolismo , Células Cultivadas , Esquema de Medicação , Avaliação Pré-Clínica de Medicamentos , Expressão Gênica , Glucocorticoides/efeitos adversos , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos DBA , Camundongos Endogâmicos mdx , Músculo Esquelético/fisiopatologia , Atrofia Muscular/induzido quimicamente , Distrofia Muscular de Duchenne/tratamento farmacológico , Prednisona/efeitos adversos , Ligação Proteica , Receptores de Glucocorticoides/metabolismo , Regeneração , Sarcolema/efeitos dos fármacos , Sarcolema/fisiologia , Ativação Transcricional/efeitos dos fármacos
2.
Blood ; 124(1): 142-50, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24782510

RESUMO

Pathologic blood clotting is a leading cause of morbidity and mortality in the developed world, underlying deep vein thrombosis, myocardial infarction, and stroke. Genetic predisposition to thrombosis is still poorly understood, and we hypothesize that there are many additional risk alleles and modifying factors remaining to be discovered. Mammalian models have contributed to our understanding of thrombosis, but are low throughput and costly. We have turned to the zebrafish, a tool for high-throughput genetic analysis. Using zinc finger nucleases, we show that disruption of the zebrafish antithrombin III (at3) locus results in spontaneous venous thrombosis in larvae. Although homozygous mutants survive into early adulthood, they eventually succumb to massive intracardiac thrombosis. Characterization of null fish revealed disseminated intravascular coagulation in larvae secondary to unopposed thrombin activity and fibrinogen consumption, which could be rescued by both human and zebrafish at3 complementary DNAs. Mutation of the human AT3-reactive center loop abolished the ability to rescue, but the heparin-binding site was dispensable. These results demonstrate overall conservation of AT3 function in zebrafish, but reveal developmental variances in the ability to tolerate excessive clot formation. The accessibility of early zebrafish development will provide unique methods for dissection of the underlying mechanisms of thrombosis.


Assuntos
Deficiência de Antitrombina III/genética , Antitrombina III/genética , Modelos Animais de Doenças , Coagulação Intravascular Disseminada/genética , Proteínas de Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Humanos , Hibridização In Situ , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA