Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Foods ; 11(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35327271

RESUMO

The microalgae Spirulina may be a popular dietary supplement rich in essential nutrients and vitamins, but oversight of the supplement industry, in general, remains limited, and increasing incidents of adulteration, misbranding, and undeclared ingredients together with misleading claims create potential risks. In response, this study characterized the elemental, amino acid and fatty acid content of commercially available Spirulina supplements in Slovenia using EDXRF, ICP-MS and GC-MS and compared the results with their nutritional declaration. The gathered data confirm that Spirulina supplements are a good source of calcium (0.15 to 29.5% of RDA), phosphorous (3.36-26.7% of RDA), potassium (0.5 to 7.69% of RDA) and selenium (0.01 to 38.6% of RDA) when consumed within recommended amounts. However, although iron contents were relatively high (7.64 to 316% of RDA), the actual bioavailability of iron was much lower since it was mainly present as the ferric cation. This study also confirms that pure Spirulina supplements are a good source of essential and non-essential amino acids, and ω-6 but not ω-3 polyunsaturated fatty acids. The presence of additives resulted in significant variation in nutrient content and, in some instances, lower product quality. Moreover, a high proportion (86.7%) of inappropriate declarations regarding the elemental content was observed. Overall, the study conclusions underline the need for a stricter control system for Spirulina-based supplements.

2.
Food Chem Toxicol ; 135: 110974, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31743745

RESUMO

During tea preparation mineral elements are extracted from the dried leaves of tea (Camellia sinensis (L.) Kuntze) plants into the solution. Micro-particle induced X-ray emission was employed to investigate the spatial distribution of magnesium (Mg), calcium (Ca) and manganese (Mn) in the young and old leaves of tea plants grown in the absence and presence of aluminium (Al) in the substrate. Results revealed that in tea leaves the largest concentrations of Mg occurred in the epidermis, of Ca in oxalate crystals and of Mn in epidermis and oxalate crystals; there was a leaf-age effect on tissue-specific concentrations of Mg, Ca and Mn with all tissues of old leaves containing larger concentrations of Mg, Ca and Mn than young leaves; supplementation of substrate with Al reduced concentrations of Mg, Ca and Mn in the old leaves, and a link between the distribution of Mg, Ca and Mn in the tea leaves with the extraction efficiencies of these elements into the tea was possible. We conclude that old leaves of tea plants cultivated under conditions of low Al availability will have the largest concentrations of Mg, Ca and Mn and may represent most acceptable ingredient for the preparation of tea.


Assuntos
Cálcio/metabolismo , Camellia sinensis/química , Magnésio/metabolismo , Manganês/metabolismo , Folhas de Planta/química , Chá/química , Alumínio/metabolismo , Cálcio/análise , Magnésio/análise , Manganês/análise , Extração em Fase Sólida , Espectrometria por Raios X , Distribuição Tecidual
3.
Food Chem Toxicol ; 135: 110939, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31697969

RESUMO

The effects of foliar Se biofortification (Se+) of the lettuce on the transfer and toxicity of Hg from soil contaminated with HgCl2 (H) and soil collected near the former Hg smelter in Idrija (I), to terrestrial food chain are explored, with Spanish slug as a primary consumer. Foliar application of Se significantly increased Se content in the lettuce, with no detected toxic effects. Mercury exerted toxic effects on plants, decreasing plant biomass, photochemical efficiency of the photosystem II (Fv/Fm) and the total chlorophyll content. Selenium biofortification (Se+ test group) had no effect on Hg bioaccumulation in plants. In slugs, different responses were observed in H and I groups; the I/Se+ subgroup was the most strongly affected by Hg toxicity, exhibiting lower biomass, feeding and growth rate and a higher hepatopancreas/ muscle Hg translocation, pointing to a higher Hg mobility in comparison to H group. Selenium increased Hg bioavailability for slugs, but with opposite physiological responses: alleviating stress in H/Se+ and inducing it in I/Se+ group, indicating different mechanisms of Hg-Se interactions in the food chain under HgCl2 and Idrija soil exposures that can be mainly attributed to different Hg speciation and ligand environment in the soil.


Assuntos
Biofortificação/métodos , Cadeia Alimentar , Gastrópodes/metabolismo , Lactuca/metabolismo , Mercúrio/toxicidade , Selênio/farmacologia , Animais , Bioacumulação , Disponibilidade Biológica , Poluentes Ambientais/farmacocinética , Poluentes Ambientais/toxicidade , Cloreto de Mercúrio/farmacocinética , Cloreto de Mercúrio/toxicidade , Mercúrio/farmacocinética , Solo/química
4.
Ecotoxicol Environ Saf ; 184: 109623, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31518823

RESUMO

This study provides information on mercury (Hg) localization, speciation and ligand environment in edible mushrooms: Boletus edulis, B. aereus and Scutiger pes-caprae collected at non-polluted and Hg polluted sites, by LA-ICP-MS, SR-µ-XRF and Hg L3-edge XANES and EXAFS. Mushrooms (especially young ones) collected at Hg polluted sites can contain more than 100 µg Hg g-1 of dry mass. Imaging of the element distribution shows that Hg accumulates mainly in the spore-forming part (hymenium) of the cap. Removal of hymenium before consumption can eliminate more than 50% of accumulated Hg. Mercury is mainly coordinated to di-thiols (43-82%), followed by di-selenols (13-35%) and tetra-thiols (12-20%). Mercury bioavailability, as determined by feeding the mushrooms to Spanish slugs (known metal bioindicators owing to accumulation of metals in their digestive gland), ranged from 4% (S. pes-caprae) to 30% (B. aereus), and decreased with increasing selenium (Se) levels in the mushrooms. Elevated Hg levels in mushrooms fed to the slugs induced toxic effects, but these effects were counteracted with increasing Se concentrations in the mushrooms, pointing to a protective role of Se against Hg toxicity through HgSe complexation. Nevertheless, consumption of the studied mushroom species from Hg polluted sites should be avoided.


Assuntos
Agaricales/química , Contaminação de Alimentos/análise , Compostos de Mercúrio/análise , Poluentes do Solo/análise , Agaricales/metabolismo , Animais , Disponibilidade Biológica , Monitoramento Ambiental , Carpóforos/química , Carpóforos/metabolismo , Gastrópodes/metabolismo , Compostos de Mercúrio/metabolismo , Compostos de Mercúrio/toxicidade , Selênio/análise , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade
5.
Ecotoxicol Environ Saf ; 136: 142-149, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27865114

RESUMO

UV radiation as an evolutionarily important environmental factor, significantly affects plants traits and alters the effects of other environmental factors. Single and combined effects of ambient UV radiation, its exclusion, and Se foliar treatments on Si concentrations and production of Si phytoliths in wheat (Triticum aestivum L.) cv. 'Reska' were studied. The effects of these treatments on growth parameters of the plants, structural and biochemical traits of the leaves, and interactions of the leaves with light, as Si incrustation is the first barrier to light at the leaf surface were also examined. Under ambient UV radiation and foliar treatment with 10mgL-1 sodium selenate solution, there was a trade-off between the plant investment in primary and secondary metabolism, as the production of UV-absorbing compounds was enhanced while photosynthetic pigment levels were reduced. Independent of Se treatment, ambient UV radiation lowered respiratory potential, Ca concentration, and leaf thickness, and increased Si concentration, Si phytoliths formation, and cuticle thickness. The Se treatment has little effect on plant traits and biomass production but it increased Se concentrations in the plants by >100-fold, independent of UV radiation. In combination with UV radiation Se strengthen the protection of plants against stress by increasing the amount of UV absorbing compounds, light reflectance and transmittance.


Assuntos
Selênio/toxicidade , Triticum/efeitos dos fármacos , Triticum/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Biomassa , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/efeitos da radiação , Triticum/química
6.
Food Chem ; 199: 782-90, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26776035

RESUMO

Tartary buckwheat is a gluten-free crop with great potential as a wheat substitute. Iron (Fe) is an important mineral element in staple foods which is required in sufficient bioaccessible quantities. The aim of the study was to investigate how processing of grains into groats (hydrothermal processing to remove the husk) and sprouts (7-day-old seedlings) affected Fe speciation (Fe(2+) or Fe(3+)), Fe ligand composition and Fe bioaccessibility to human Caco-2 cells. Groats contained the least Fe (23.8 ± 1.65 mg kg(-1)) and the lowest amounts of Fe(2+) (8%). Grains and sprouts had comparable Fe concentrations (78.2 ± 2.65 and 68.9 ± 2.73 mg kg(-1)) and similar proportions of Fe(2+) (15% and 18%). The main ligands for Fe in Tartary buckwheat material were phytate and citrate. Phytate was less abundant in sprouts, which did not correlate with greater Fe bioaccessibility. Iron bioaccessibility was 4.5-fold greater for grains than groats, suggesting that Fe is more bioaccessible in the husk than in the rest of the grain.


Assuntos
Células CACO-2/química , Fagopyrum/química , Ferro/metabolismo , Grão Comestível , Germinação , Humanos , Plântula
7.
J Exp Bot ; 64(11): 3249-60, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23918965

RESUMO

Iron insufficiency is a worldwide problem in human diets. In cereals like wheat, the bran layer of the grains is an important source of iron. However, the dietary availability of iron in wheat flour is limited due to the loss of the iron-rich bran during milling and processing and the presence of anti-nutrients like phytic acid that keep iron strongly chelated in the grain. The present study investigated the localization of iron and phosphorus in grain tissues of wheat genotypes with contrasting grain iron content using synchrotron-based micro-X-ray fluorescence (micro-XRF) and micro-proton-induced X-ray emission (micro-PIXE). X-ray absorption near-edge spectroscopy (XANES) was employed to determine the proportion of divalent and trivalent forms of Fe in the grains. It revealed the abundance of oxygen, phosphorus, and sulphur in the local chemical environment of Fe in grains, as Fe-O-P-R and Fe-O-S-R coordination. Contrasting differences were noticed in tissue-specific relative localization of Fe, P, and S among the different genotypes, suggesting a possible effect of localization pattern on iron bioavailability. The current study reports the shift in iron distribution from maternal to filial tissues of grains during the evolution of wheat from its wild relatives to the present-day cultivated varieties, and thus suggests the value of detailed physical localization studies in varietal improvement programmes for food crops.


Assuntos
Grão Comestível/metabolismo , Ferro/metabolismo , Triticum/metabolismo , Fósforo/metabolismo , Enxofre/metabolismo
8.
J Exp Bot ; 62(11): 3929-39, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21447756

RESUMO

Mature developed seeds are physiologically and biochemically committed to store nutrients, principally as starch, protein, oils, and minerals. The composition and distribution of elements inside the aleurone cell layer reflect their biogenesis, structural characteristics, and physiological functions. It is therefore of primary importance to understand the mechanisms underlying metal ion accumulation, distribution, storage, and bioavailability in aleurone subcellular organelles for seed fortification purposes. Synchrotron radiation soft X-ray full-field imaging mode (FFIM) and low-energy X-ray fluorescence (LEXRF) spectromicroscopy were applied to characterize major structural features and the subcellular distribution of physiologically important elements (Zn, Fe, Na, Mg, Al, Si, and P). These direct imaging methods reveal the accumulation patterns between the apoplast and symplast, and highlight the importance of globoids with phytic acid mineral salts and walls as preferential storage structures. C, N, and O chemical topographies are directly linked to the structural backbone of plant substructures. Zn, Fe, Na, Mg, Al, and P were linked to globoid structures within protein storage vacuoles with variable levels of co-localization. Si distribution was atypical, being contained in the aleurone apoplast and symplast, supporting a physiological role for Si in addition to its structural function. These results reveal that the immobilization of metals within the observed endomembrane structures presents a structural and functional barrier and affects bioavailability. The combination of high spatial and chemical X-ray microscopy techniques highlights how in situ analysis can yield new insights into the complexity of the wheat aleurone layer, whose precise biochemical composition, morphology, and structural characteristics are still not unequivocally resolved.


Assuntos
Sementes/ultraestrutura , Triticum/ultraestrutura , Vacúolos/ultraestrutura , Metais/química , Fósforo/química , Ácido Fítico/química , Sementes/química , Espectrometria por Raios X , Síncrotrons , Vacúolos/química , Raios X
9.
J Agric Food Chem ; 59(4): 1275-80, 2011 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-21226516

RESUMO

The elemental composition of specific fractions of cereal and pseudocereal grains can be roughly estimated after milling. Alternatively, the elemental localization of cross-sectioned grains can be quantitatively analyzed by microproton induced X-ray emission (micro-PIXE), taking advantage of high elemental sensitivity and low lateral resolution. We present a micro-PIXE study on buckwheat (Fagopyrum esculentum) grain, with a detailed description of the elemental distributions. Elements such as Mg, P, S, K, Fe, Ni, Cu, and Zn were preferentially localized in the cotyledons and embryonic axis; however, significant amounts of K and Fe were also found in the pericarp. The aleurone layer covering the cotyledons was especially enriched in S and P, while testa, a thin layer above the aleurone did not show any significant element enrichments. The highest concentrations of Al, Si, Cl, Ca, and Ti were found in the pericarp. A detailed element localization study of pericarp layers revealed that the inner layer was enriched in K, Mn, Ca, and Fe, while the outer layer showed enrichments in Na, Mg, P, S, and Al. On the basis of the data obtained, milling techniques can be adapted to obtain milling fractions with targeted nutritional values.


Assuntos
Fagopyrum/química , Sementes/química , Espectrometria por Raios X/métodos , Oligoelementos/análise , Cotilédone/química , Endosperma/química , Manipulação de Alimentos/métodos , Sementes/anatomia & histologia
10.
J Plant Res ; 124(1): 165-72, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20422247

RESUMO

Information on localization of Al in tea leaf tissues is required in order to better understand Al tolerance mechanism in this Al-accumulating plant species. Here, we have used low-energy X-ray fluorescence spectro-microscopy (LEXRF) to study localization of Al and other low Z-elements, namely C, O, Mg, Si and P, in fully developed leaves of the tea plant [Camellia sinensis (L.) O. Kuntze]. Plants were grown from seeds for 3 months in a hydroponic solution, and then exposed to 200 microM AlCl(3) for 2 weeks. Epidermal-mesophyll and xylem phloem regions of 20 microm thick cryo-fixed freeze-dried tea-leaf cross-sections were raster scanned with 1.7 and 2.2 keV excitation energies to reach the Al-K and P-K absorption edges. Al was mainly localized in the cell walls of the leaf epidermal cells, while almost no Al signal was obtained from the leaf symplast. The results suggest that the retention of Al in epidermal leaf apoplast represent the main tolerance mechanism to Al in tea plants. In addition LEXRF proved to be a powerful tool for localization of Al in plant tissues, which can help in our understanding of the processes of Al uptake, transport and tolerance in plants.


Assuntos
Alumínio/metabolismo , Camellia sinensis/metabolismo , Microscopia de Fluorescência/métodos , Folhas de Planta/metabolismo , Espectrometria por Raios X/métodos , Camellia sinensis/citologia , Floema/citologia , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Folhas de Planta/citologia , Xilema/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA