Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de estudo
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Inorg Biochem ; 195: 149-163, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30952084

RESUMO

Five novel silver(I) complexes with 4,7-phenanthroline (4,7-phen), [Ag(NO3-O)(4,7-phen-µ-N4,N7)]n (1), [Ag(ClO4-О)(4,7-phen-µ-N4,N7)]n (2), [Ag(CF3COO-O)(4,7-phen-µ-N4,N7)]n (3), [Ag2(H2O)0.58(4,7-phen)3](SbF6)2 (4) and {[Ag2(H2O)(4,7-phen-µ-N4,N7)2](BF4)2}n (5) were synthesized, structurally elucidated and biologically evaluated. These complexes showed selectivity towards Candida spp. in comparison to the tested bacteria and effectively inhibited the growth of four different Candida species, particularly of C. albicans strains, with minimal inhibitory concentrations (MICs) in the range of 2.0-10.0 µM. In order to evaluate the therapeutic potential of 1-5, in vivo toxicity studies were conducted in the zebrafish model. Based on the favorable therapeutic profiles, complexes 1, 3 and 5 were selected for the evaluation of their antifungal efficacy in vivo using the zebrafish model of lethal disseminated candidiasis. Complexes 1 and 3 efficiently controlled and prevented fungal filamentation even at sub-MIC doses, while drastically increased the survival of the infected embryos. Moreover, at the MIC doses, both complexes totally prevented C. albicans filamentation and rescued almost all infected fish of the fatal infection outcome. On the other side, complex 5, which demonstrated the highest antifungal activity in vitro, affected the neutrophils occurrence of the infected host, failed to inhibit the C. albicans cells filamentation and showed a poor potential to cure candidal infection, highlighting the importance of the in vivo activity evaluation early in the therapeutic design and development process. The mechanism of action of the investigated silver(I) complexes was related to the induction of reactive oxygen species (ROS) response in C. albicans, with DNA being one of the possible target biomolecules.


Assuntos
Antifúngicos/uso terapêutico , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Complexos de Coordenação/uso terapêutico , Fenantrolinas/uso terapêutico , Animais , Antifúngicos/síntese química , Antifúngicos/toxicidade , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/toxicidade , Testes de Sensibilidade Microbiana , Fenantrolinas/síntese química , Fenantrolinas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Prata/química , Peixe-Zebra/embriologia
2.
Int Microbiol ; 22(3): 343-353, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30810997

RESUMO

The objective of the present study was to isolate Actinobacteria, preferably Streptomyces spp. from the rhizosphere soils of three ethno-medicinal plants collected in Serbia (Papaver rhoeas, Matricaria chamomilla, and Urtica dioica) and to screen their antifungal activity against Candida spp. Overall, 103 sporulating isolates were collected from rhizosphere soil samples and determined as Streptomyces spp. Two different media and two extraction procedures were used to facilitate identification of antifungals. Overall, 412 crude cell extracts were tested against Candida albicans using disk diffusion assays, with 42% (43/103) of the strains showing the ability to produce antifungal agents. Also, extracts inhibited growth of important human pathogens: Candida krusei, Candida parapsilosis, and Candida glabrata. Based on the established degree and range of antifungal activity, nine isolates, confirmed as streptomycetes by 16S rRNA sequencing, were selected for further testing. Their ability to inhibit Candida growth in liquid culture, to inhibit biofilm formation, and to disperse pre-formed biofilms was assessed with active concentrations from 8 to 250 µg/mL. High-performance liquid chromatographic profiles of extracts derived from selected strains were recorded, revealing moderate metabolic diversity. Our results proved that rhizosphere soil of ethno-medicinal plants is a prolific source of streptomycetes, producers of potentially new antifungal compounds.


Assuntos
Antifúngicos/metabolismo , Candida/efeitos dos fármacos , Plantas Medicinais/microbiologia , Rizosfera , Microbiologia do Solo , Streptomyces/isolamento & purificação , Streptomyces/metabolismo , Candida/crescimento & desenvolvimento , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sérvia , Streptomyces/classificação , Streptomyces/genética
3.
Planta Med ; 83(1-02): 117-125, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27220074

RESUMO

Diarylheptanoids from the barks of Alnus viridis ssp. viridis (green alder) and Alnus glutinosa (black alder) were explored for anti-quorum sensing activity. Chemicals with anti-quorum sensing activity have recently been examined for antimicrobial applications. The anti-quorum sensing activity of the selected diarylheptanoids was determined using two biosensors, namely Pseudomonas aeruginosa PAO1 and Chromobacterium violaceum CV026. Although all of the investigated compounds negatively influenced the motility of P. aeruginosa PAO1, four were able to inhibit biofilm formation of this human opportunistic pathogen for 40-70 %. Three of the diarylheptanoids (3, 4, and 5) negatively influenced the biosynthesis of pyocyanin, which is under the control of quorum sensing. Platyphyllenone (7) and hirsutenone (5) were able to inhibit the biosynthesis of violacein in C. violaceum CV026, with 5 being able to inhibit the synthesis of both biopigments. Only one of the tested diarylheptanoids (1) was shown to significantly decrease the production of acyl homoserine lactones (AHL) in P. aeruginosa PAO1, more specifically, production of the long chain N-(3-oxododecanoyl)-l-HSL. On the other side, four diarylheptanoids (2-5) significantly reduced the synthesis of 2-alkyl-4-quinolones, part of the P. aeruginosa quinolone-mediated signaling system. To properly assess therapeutic potential of these compounds, their in vitro antiproliferative effect on normal human lung fibroblasts was determined, with doses affecting cell proliferation between 10 and 100 µg/mL. This study confirms that the barks of green and black alders are rich source of phytochemicals with a wide range of biological activities that could further be exploited as natural agents against bacterial contaminations and infections.


Assuntos
Alnus/química , Chromobacterium/efeitos dos fármacos , Diarileptanoides/farmacologia , Extratos Vegetais/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Acil-Butirolactonas/metabolismo , Antibacterianos/farmacologia , Catecóis/metabolismo , Chromobacterium/metabolismo , Diarileptanoides/química , Diarileptanoides/isolamento & purificação , Diarileptanoides/metabolismo , Humanos , Indóis/metabolismo , Casca de Planta/química , Pseudomonas aeruginosa/metabolismo , Piocianina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA