Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 17515, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845236

RESUMO

Difficulty falling asleep is one of the typical insomnia symptoms. However, intervention therapies available nowadays, ranging from pharmaceutical to hi-tech tailored solutions, remain ineffective due to their lack of precise real-time sleep tracking, in-time feedback on the therapies, and an ability to keep people asleep during the night. This paper aims to enhance the efficacy of such an intervention by proposing a novel sleep aid system that can sense multiple physiological signals continuously and simultaneously control auditory stimulation to evoke appropriate brain responses for fast sleep promotion. The system, a lightweight, comfortable, and user-friendly headband, employs a comprehensive set of algorithms and dedicated own-designed audio stimuli. Compared to the gold-standard device in 883 sleep studies on 377 subjects, the proposed system achieves (1) a strong correlation (0.89 ± 0.03) between the physiological signals acquired by ours and those from the gold-standard PSG, (2) an 87.8% agreement on automatic sleep scoring with the consensus scored by sleep technicians, and (3) a successful non-pharmacological real-time stimulation to shorten the duration of sleep falling by 24.1 min. Conclusively, our solution exceeds existing ones in promoting fast falling asleep, tracking sleep state accurately, and achieving high social acceptance through a reliable large-scale evaluation.


Assuntos
Distúrbios do Início e da Manutenção do Sono , Dispositivos Eletrônicos Vestíveis , Humanos , Estimulação Acústica , Sono/fisiologia , Polissonografia
2.
Sci Rep ; 7(1): 12277, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28947782

RESUMO

Precision cancer medicine seeks to target the underlying genetic alterations of cancer; however, it has been challenging to use genetic profiles of individual patients in identifying the most appropriate anti-cancer drugs. This spurred the development of patient avatars; for example, patient-derived xenografts (PDXs) established in mice and used for drug exposure studies. However, PDXs are associated with high cost, long development time and low efficiency of engraftment. Herein we explored the use of microfluidic devices or microchambers as simple and low-cost means of maintaining bladder cancer cells over extended periods of times in order to study patterns of drug responsiveness and resistance. When placed into 75 µm tall microfluidic chambers, cancer cells grew as ellipsoids reaching millimeter-scale dimeters over the course of 30 days in culture. We cultured three PDX and three clinical patient specimens with 100% success rate. The turn-around time for a typical efficacy study using microchambers was less than 10 days. Importantly, PDX-derived ellipsoids in microchambers retained patterns of drug responsiveness and resistance observed in PDX mice and also exhibited in vivo-like heterogeneity of tumor responses. Overall, this study establishes microfluidic cultures of difficult-to-maintain primary cancer cells as a useful tool for precision cancer medicine.


Assuntos
Antineoplásicos/administração & dosagem , Microfluídica/métodos , Técnicas de Cultura de Órgãos/métodos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Antineoplásicos/farmacologia , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Resistência a Medicamentos , Humanos , Microfluídica/instrumentação , Modelos Teóricos , Técnicas de Cultura de Órgãos/instrumentação , Organoides/efeitos dos fármacos , Organoides/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA