Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Complement Med Ther ; 23(1): 47, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788545

RESUMO

BACKGROUND: Malaria continues to be a global problem due to the limited efficacy of current drugs and the natural products are a potential source for discovering new antimalarial agents. Therefore, the aims of this study were to investigate phytochemical properties, cytotoxic effect, antioxidant, and antiplasmodial activities of Sonchus arvensis L. leaf extracts both in vitro and in vivo. METHODS: The extracts from S. arvensis L. leaf were prepared by successive maceration with n-hexane, ethyl acetate, and ethanol, and then subjected to quantitative phytochemical analysis using standard methods. The antimalarial activities of crude extracts were tested in vitro against Plasmodium falciparum 3D7 strain while the Peter's 4-day suppressive test model with P. berghei-infected mice was used to evaluate the in vivo antiplasmodial, hepatoprotective, nephroprotective, and immunomodulatory activities. The cytotoxic tests were also carried out using human hepatic cell lines in [3(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) assay. RESULT: The n-hexane, ethyl acetate, and ethanolic extracts of S. arvensis L. leaf exhibited good in vitro antiplasmodial activity with IC50 values 5.119 ± 3.27, 2.916 ± 2.34, and 8.026 ± 1.23 µg/mL, respectively. Each of the extracts also exhibited high antioxidant with low cytotoxic effects. Furthermore, the ethyl acetate extract showed in vivo antiplasmodial activity with ED50 = 46.31 ± 9.36 mg/kg body weight, as well as hepatoprotective, nephroprotective, and immunomodulatory activities in mice infected with P. berghei. CONCLUSION: This study highlights the antiplasmodial activities of S. arvensis L. leaf ethyl acetate extract against P. falciparum and P. berghei as well as the antioxidant, nephroprotective, hepatoprotective, and immunomodulatory activities with low toxicity. These results indicate the potential of Sonchus arvensis L. to be developed into a new antimalarial drug candidate. However, the compounds and transmission-blocking strategies for malaria control of S. arvensis L. extracts are essential for further study.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Sonchus , Humanos , Animais , Camundongos , Antimaláricos/uso terapêutico , Extratos Vegetais/química , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Malária/tratamento farmacológico , Etanol , Malária Falciparum/tratamento farmacológico , Compostos Fitoquímicos/uso terapêutico
2.
Appl Microbiol Biotechnol ; 97(17): 7821-30, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23828601

RESUMO

Cultured cell extracts from ten tropical strains of Aureobasidium pullulans were screened for antifungal activity against four pathogenic Aspergillus species (Aspergillus flavus, Aspergillus niger, Aspergillus fumigatus, and Aspergillus terreus) using the well diffusion and conidial germination inhibition assays. The crude cell extract from A. pullulans NRRL 58536 resulted in the greatest fungicidal activity against all four Aspergillus species and so was selected for further investigation into enhancing the production of antifungal activity through optimization of the culture medium, carbon source (sucrose and glucose) and amino acid (phenylalanine, proline, and leucine) supplementation. Sucrose did not support the production of any detectable antifungal activity, while glucose did with the greatest antifungal activity against all four Aspergillus species being produced in cells grown in medium containing 2.5 % (w/v) glucose. With respect to the amino acid supplements, variable trends between the different Aspergillus species and amino acid combinations were observed, with the greatest antifungal activities being obtained when grown with phenylalanine plus leucine supplementation for activity against A. flavus, proline plus leucine for A. terreus, and phenylalanine plus proline and leucine for A. niger and A. fumigatus. Thin layer chromatography, spectrophotometry, high-performance liquid chromatography, (1)H-nuclear magnetic resonance, and MALDI-TOF mass spectrometry analyses were all consistent with the main component of the A. pullulans NRRL 58536 extracts being aureobasidins.


Assuntos
Aminoácidos/metabolismo , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Ascomicetos/metabolismo , Aspergillus/efeitos dos fármacos , Glucose/metabolismo , Sacarose/metabolismo , Antifúngicos/química , Ascomicetos/química , Aspergillus/classificação , Aspergillus/crescimento & desenvolvimento , Meios de Cultura/química , Meios de Cultura/metabolismo , Depsipeptídeos/química , Depsipeptídeos/metabolismo , Depsipeptídeos/farmacologia , Testes de Sensibilidade Microbiana , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
3.
J Pharm Sci ; 101(10): 3779-86, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22806358

RESUMO

To fully make use of the synergism between paclitaxel and curcumin (CUR) in cancer treatment, carrier made from CUR derivative was synthesized and used to deliver paclitaxel into cancer cells. The methoxylpolyethylene oxide-linked palmitate-modified curcumin (mPEO-CUR-PA) was synthesized and the obtained amphiphilic mPEO-CUR-PA molecules were allowed to self-assemble into microspheres. In vitro release of free CUR from mPEO-CUR-PA in the presence of lipase was proofed and the ability of cells to endocytose mPEO-CUR-PA microspheres was verified. Cytotoxic activity of the mPEO-CUR-PA microspheres toward cancer cell lines (S102 and A549) was evaluated and compared with that of the unmodified CUR. Paclitaxel was then loaded into the microspheres and the paclitaxel-loaded mPEO-CUR-PA microspheres showed up to fivefold to 44-fold increased in vitro cytotoxicity (in terms of % cell mortality) in susceptible (HCC-S102 and A549) and paclitaxel-resistant (A549RT-eto) cancer cells, respectively, compared with that of free paclitaxel.


Assuntos
Curcumina/análogos & derivados , Curcumina/administração & dosagem , Paclitaxel/administração & dosagem , Paclitaxel/química , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacocinética , Linhagem Celular Tumoral , Curcumina/química , Curcumina/farmacocinética , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Sinergismo Farmacológico , Endocitose , Humanos , Microesferas , Paclitaxel/farmacocinética
4.
Molecules ; 16(2): 1888-900, 2011 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-21343891

RESUMO

A novel series of succinyl derivatives of three curcuminoids were synthesized as potential prodrugs. Symmetrical (curcumin and bisdesmethoxycurcumin) and unsymmetrical (desmethoxycurcumin) curcuminoids were prepared through aldol condensation of 2,4-pentanedione with different benzaldehydes. Esterification of these compounds with a methyl or ethyl ester of succinyl chloride gave the corresponding succinate prodrugs in excellent yields. Anticolon cancer activity of the compounds was evaluated using Caco-2 cells. The succinate prodrugs had IC50 values in the 1.8-9.6 µM range, compared to IC50 values of 3.3-4.9 µM for the parent compounds. Curcumin diethyl disuccinate exhibited the highest potency and was chosen for stability studies. Hydrolysis of this compound in phosphate buffer at pH 7.4 and in human plasma followed pseudo first-order kinetics. In phosphate buffer, the k(obs) and t(½) for hydrolysis indicated that the compound was much more stable than curcumin. In human plasma, this compound was able to release curcumin, therefore our results suggest that succinate prodrugs of curcuminoids are stable in phosphate buffer, release the parent curcumin derivatives readily in human plasma, and show anti-colon cancer activity.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Curcumina/síntese química , Curcumina/uso terapêutico , Pró-Fármacos/síntese química , Pró-Fármacos/uso terapêutico , Succinatos/síntese química , Succinatos/uso terapêutico , Células CACO-2 , Curcumina/análogos & derivados , Curcumina/química , Curcumina/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Succinatos/química , Succinatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA