Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Chem Biodivers ; 21(2): e202301815, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38152840

RESUMO

Pistacia chinensis subsp. integerrima (J.L. Stewart) Rech. f. is a plant known for its therapeutic applications in traditional medicine, which are related to its antimicrobial, anticancer, antioxidant, anti-inflammatory, analgesic, antidiarrheal, and muscle relaxant properties. The galls of P. chinensis are rich in triterpenes and flavonoids, and we here report the extraction of pistagremic acid (1), apigenin (2) and sakuranetin (3) from this source. The isolated compounds were tested against Aspergillus flavus, Candida albicans, Candida glabrata, Fusarium solani, Microsporum canis and Trichoderma longibrachiatum. The results highlighted the antimicrobial activity of flavonoids 2 and 3, suggesting that this class of molecules may be responsible for the effect related to the traditional use. On the other hand, when the compounds and the extract were tested for their antiproliferative activity on a panel of 4 human cancer cell lines, the triterpene pistagremic acid (1) showed a higher potential, thus demonstrating a different bioactivity profile. Structure-based docking and molecular dynamics simulations were used to help the interpretation of experimental results. Taken together, the here reported findings pave the way for the rationalization of the use of P. chinensis extracts, highlighting the contributions of the different components of galls to the observed bioactivity.


Assuntos
Pistacia , Triterpenos , Humanos , Antifúngicos/farmacologia , Triterpenos/farmacologia , Flavonoides/farmacologia , Extratos Vegetais
2.
Heliyon ; 9(3): e13816, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36895410

RESUMO

Diospyros kaki (Japanese persimmon) is cultivated specious of the Diospyros genus. D. kaki is a multi-medicinal application in the folk system for the cure of ischemic stroke, angina, atherosclerosis, muscle relaxation, internal hemorrhage, hypertension, high cough, and infectious disease. The main objective of this study was the isolated bioactive metabolites from chloroform fractions of D. kaki. The extract and fractions were then tested for various in-vitro (antioxidant and lipoxygenase) and in-vivo (muscle relaxant) activities. The repeated chromatographic separation of chloroform extract afforded compound 1. Compound 1, n-hexane, and chloroform fractions were evaluated for in vitro antioxidant, lipoxygenase inhibitory, and in vivo muscle relaxant potency. The chloroform extract has 79.54% interaction with DPPH at higher concentrations (100 µg/ml) while the compound exhibited a maximum effect of 95.09% at 100 µg/ml. Compound 1 exhibited significant lipoxygenase inhibitory activity with an IC50 value of 36.98 µM followed by a chloroform extract of 57.09 µM. Similarly, compound 1 and chloroform extract showed excellent muscle relaxant effects at a higher dose. From this investigation, it is concluded that extracts and pure compounds exhibited promising antioxidant, lipoxygenase inhibitory, and muscle relaxant activity. This study excellently rationalizes the traditional usage of D. kaki in curing various diseases. Furthermore, the docking results indicate, that the isolated compound fits well into the active site of the lipoxygenase, and makes strong interactions with the target protein.

3.
Biomed Res Int ; 2022: 7053655, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36582600

RESUMO

Ficus benghalensis is one of the potential medicinal plants which is used locally for the treatment of various ailments such as diabetes, antiasthmatic, and wound healing. To provide a scientific background to these folklores, the current study was designed to evaluate the extract and isolated compound against various enzymes such as ureases, tyrosinase, and phosphodiesterase. The methanolic extract and carpachromene demonstrated a significant urease inhibition effect with maximum percent inhibition of 72.09 and 92.87%, respectively. Regarding the tyrosinase inhibition, the percent antagonist effect of carpachromene and the methanolic extract was 84.80 and 70.98%, respectively. The phosphodiesterase was also significantly antagonized by crude extract and carpachromene with a maximum percent inhibition of 82.98% and 89.54%, respectively. The docking study demonstrated that the carpachromene fits well into the active site of all three enzymes with significant interactions. Carpachromene might possess the potential to inhibit all three enzymes and can effectively treat different diseases associated with the hyperactivity of these enzymes. In conclusion, the crude extract and carpachromene exhibit significant urease, tyrosinase, and phosphodiesterase inhibitory activity which might be used against various diseases. In conclusion, the crude extract and carpachromene exhibit significant urease, tyrosinase, and phosphodiesterase inhibitory activity which might be used against diabetes and bronchoconstriction. Further, the current study provides scientific backup to the folklore (antidiabetic and antiasthmatic) of Ficus benghalensis.


Assuntos
Ficus , Extratos Vegetais , Diabetes Mellitus/tratamento farmacológico , Ficus/química , Monofenol Mono-Oxigenase , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Urease
4.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36297317

RESUMO

The present study is aimed to determine the efficacy and dose response of the nuciferine (1), norcoclaurine (2) and crude extract of Nelumbo nucifera in managements of diabetes, Alzheimer disease and related allergies. Experimentally, alloxan (100 mg/kg body weight (b.w.))-induced diabetic rats (200−250 g) were divided into seven groups (n = 6). Group I: normal control, Group II: diabetic control, Group III: standard treated with glibenclamide and Group lV-VII: treated with methanolic crude extracts (100, 200 mg/kg), nuciferine and norcoclaurine (10 mg/kg b.w.) for 15 days. Different tests were performed, including blood glucose, body weights and antioxidant enzyme assays, i.e., superoxide dismutase (SOD), catalase test (CAT), lipid peroxidation assay (TBARS), glutathione assay (GSH) and acetylcholinesterase (AChE) assay. Nuciferine and norcoclaurine significantly reduced blood glucose (p < 0.05) and restored body weight in diabetic rats. Moreover, nuciferine and norcoclaurine (10 mg/kg) significantly recovered the antioxidant enzymes (SOD, CAT, GPx and GSH) which decreased during induced diabetes. Significant increase in TBARS was also observed in the diabetic group and nuciferine as well as norcoclaurine (10 mg/kg) inhibited the increase in TBARS in diabetic animals (p < 0.05), as compared to glibenclamide. AChE activity was significantly recovered by nuciferine and norcoclaurine (10 mg/kg) both in the blood and brain of the diabetic group (p < 0.05). Nuciferine and norcoclaurine showed potent inhibitory effects against α-glucosidase and α-amylase with IC50, 19.06 ± 0.03, 15.03 ± 0.09 µM and 24.07 ± 0.05, 18.04 ± 0.021 µM, as confirmed by molecular docking studies. This study concludes that nuciferine and norcoclaurine significantly improve memory and could be considered as an effective phytomedicine for diabetes, Alzheimer's disease (AD) and oxidative stress.

5.
Gels ; 8(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36286177

RESUMO

Hydrogels can provide instant relief to pain and facilitate the fast recovery of wounds. Currently, the incorporation of medicinal herbs/plants in polymer matrix is being investigated due to their anti-bacterial and wound healing properties. Herein, we investigated the novel combination of chitosan (CS) and chondroitin sulfate (CHI) to synthesize hydrogels through freeze gelation process and enriched it with garlic (Gar) by soaking the hydrogels in garlic juice for faster wound healing and resistance to microbial growth at the wound surface. The synthesized hydrogels were characterized via Fourier-transform infrared spectroscopy (FTIR), which confirmed the presence of relevant functional groups. The scanning electron microscopy (SEM) images exhibited the porous structure of the hydrogels, which is useful for the sustained release of Gar from the hydrogels. The synthesized hydrogels showed significant inhibition zones against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Furthermore, cell culture studies confirmed the cyto-compatibility of the synthesized hydrogels. Thus, the novel hydrogels presented in this study can offer an antibacterial effect during wound healing and promote tissue regeneration.

6.
Artigo em Inglês | MEDLINE | ID: mdl-35754682

RESUMO

Phytochemical studies on the alkaloids fraction of the entire plant of Isatis minima Bunge resulted in the alkaloids 1-4 isolation, which were first time isolated from this species. The 1D and 2D NMR spectroscopic data were used to identify their structures, and there was satisfactory compatibility of the data compared to those which were previously published. In the examined compounds 1-4, Isaindigotidione (3) and Isaindigotone (4) were shown as an effective urease inhibitor in such a concentration-dependent way against Jack bean and Bacillus pasteurii urease, with IC50 values 29.03 ± 0.04, 20.04 ± 0.09 and 34.03 ± 0.07, 26.13 ± 0.08 µM, respectively. Compounds 3 and 4 were likewise shown to be an effective inhibitor against α-chymotrypsin, exhibiting IC50 values 16.09 ± 0.07 and 22.01 ± 0.06 µM, correspondingly. The program MOE-Dock was used to perform a molecular docking analysis to confirm probable binding modes of the active complexes of the isolated compounds 1-4 and the crystal structure of urease and α-chymotrypsin enzymes. Compound 3 was the most active, having the highest docking scores against Bacillus pasteurii urease, α-chymotrypsin, and Jack bean (-8.6876), (-7.6647), and (-13.1927) µM, respectively. All four alkaloids (1-4) showed significant urease and protease inhibitory potential and further these activities were confirmed with the help of molecular docking study.

7.
Saudi J Biol Sci ; 29(6): 103302, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35602870

RESUMO

In tropical and sub-tropical areas of the world the most damaging pest of the livestock sector are cattle tick, Rhipicephalus microplus. The current study was aimed to generate phytochemical derived acaricides to control Rhipicephalus microplus populations, to maintain livestock herd production, minimize economic losses and to reduce uses of man-made chemicals acaricides. To achieve this goal, Adult immersion and larval package test were used to determine the feasibility of Berberium lyceum and Tamarixa aphylla against Rhipicephalus microplus ticks. Further, an In silico technique was employed to discover biologically active substances from both plants using docking method. Berberium lyceum and Tamarixa aphylla exhibited a reasonably high fatal effect at 40.0 mg/L on egg laying (index of egg laying = 0.19 and 0.19) respectively, thus inhibiting the oviposition (49.5 and 45.1, respectively) and the larval mortality (97% and 93%, respectively). Further, we also used Chem-Draw ultra-software (v. 12.0.2.1076. 2010) to illustrate different structures of38 known bioactive phytochemicals which are discovered in the PubChem database and verify the hypothesis that tick inhibition was linked to acetylcholinesterase (AChE). Barbamunine and rutin from Berberium lyceum showed remarkable interaction with RmAChE1 active site residues with docking scores of -9.11 to -8.71 while phytol and dehydrodigallic acid from Tamarix aphylla showed comparable docking scores of -7.17 and -7.14 respectively against Rhipicephalus microplus acetylcholinesterase protein. Based on obtained result, we believe that Berberium lyceum and Tamarixa aphylla bioactive components could be potential candidates in the control and management of Rhipicephalus microplus and should be studied further as a supplement or replacement for synthetic acaricides.

8.
Drug Dev Res ; 82(8): 1169-1181, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33983647

RESUMO

Urease plays a significant role in the pathogenesis of urolithiasis pyelonephritis, urinary catheter encrustation, hepatic coma, hepatic encephalopathy, and peptic acid duodenal ulcers. Salvinia molesta was explored to identify new bioactive compounds with particular emphasis on urease inhibitors. The aqueous methanol extract was fractionated using solvents of increasing polarity. A series of column chromatography and later HPLC were performed on butanol extract. The structures of the resulting pure compounds were resolved using NMR (1D and 2D), infrared, and mass spectroscopy. The novel isolate was evaluated for antioxidant activity (using DPPH, superoxide anion radical scavenging, oxidative burst, and Fe+2 chelation assays), anti-glycation behavior, anticancer activity, carbonic anhydrase inhibition, phosphodiesterase inhibition, and urease inhibition. One new glucopyranose derivative 6'-O-(3,4-dihydroxybenzoyl)-4'-O-(4-hydroxybenzoyl)-α/ß-D-glucopyranoside (1) and four known glycosides were identified. Glycoside 1 demonstrated promising antioxidant potential with IC50 values of 48.2 ± 0.3, 60.3 ± 0.6, and 42.1 ± 1.8 µM against DPPH, superoxide radical, and oxidative burst, respectively. Its IC50 in the Jack bean urease inhibition assay was 99.1 ± 0.8 µM. The mechanism-based kinetic studies presented that compound 1 is a mixed-type inhibitor of urease with a Ki value of 91.8 ± 0.1 µM. Finally, molecular dynamic simulations exploring the binding mode of compound 1 with urease provided quantitative agreement between estimated binding free energies and the experimental results. The studies corroborate the use of compound 1 as a lead for QSAR studies as an antioxidant and urease inhibitor. Moreover, it needs to be further evaluated through the animal model, that is, in vivo or tissue culture-based ex-vivo studies, to establish their therapeutic potential against oxidative stress phosphodiesterase-II and urease-induced pathologies.


Assuntos
Antioxidantes/isolamento & purificação , Extratos Vegetais/análise , Traqueófitas/química , Urease/antagonistas & inibidores , Antioxidantes/farmacologia , Inibidores Enzimáticos/isolamento & purificação , Medições Luminescentes , Simulação de Acoplamento Molecular , Inibidores de Fosfodiesterase/isolamento & purificação , Urease/química
9.
Biomolecules ; 11(2)2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671607

RESUMO

Tumor necrosis factor-α (TNF-α) is a drug target in rheumatoid arthritis and several other auto-immune disorders. TNF-α binds with TNF receptors (TNFR), located on the surface of several immunological cells to exert its effect. Hence, the use of inhibitors that can hinder the complex formation of TNF-α/TNFR can be of medicinal significance. In this study, multiple chem-informatics approaches, including descriptor-based screening, 2D-similarity searching, and pharmacophore modelling were applied to screen new TNF-α inhibitors. Subsequently, multiple-docking protocols were used, and four-fold post-docking results were analyzed by consensus approach. After structure-based virtual screening, seventeen compounds were mutually ranked in top-ranked position by all the docking programs. Those identified hits target TNF-α dimer and effectively block TNF-α/TNFR interface. The predicted pharmacokinetics and physiological properties of the selected hits revealed that, out of seventeen, seven compounds (4, 5, 10, 11, 13-15) possessed excellent ADMET profile. These seven compounds plus three more molecules (7, 8 and 9) were chosen for molecular dynamics simulation studies to probe into ligand-induced structural and dynamic behavior of TNF-α, followed by ligand-TNF-α binding free energy calculation using MM-PBSA. The MM-PBSA calculations revealed that compounds 4, 5, 7 and 9 possess highest affinity for TNF-α; 8, 11, 13-15 exhibited moderate affinities, while compound 10 showed weaker binding affinity with TNF-α. This study provides valuable insights to design more potent and selective inhibitors of TNF-α, that will help to treat inflammatory disorders.


Assuntos
Quimioinformática/métodos , Receptores do Fator de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Simulação por Computador , Dimerização , Desenho de Fármacos , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Inflamação , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Bibliotecas de Moléculas Pequenas/química
10.
Inflammation ; 44(1): 297-306, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32901390

RESUMO

Heterophragma adenophyllum is a traditional medicinal plant that has been used as anti-inflammatory and to relief muscular tension. In the current research, four isolated constitutes namely lapacho (1), peshawaraquinone (2), indanone derivatives (3), α-lapachone (4) of H. adenophyllum were tested for anti-inflammatory effect using the carrageenan- and histamine-induced paw edema paradigm. The tested compounds (1-4) were evaluated for anti-inflammatory effect during the early and late phase of edema induction. In the early phase, all tested compounds (0.5 2.5 mg/kg each i.p.) demonstrated less than 50% effect, while in the later phase, compounds (2 and 3) demonstrated 85.66 and 89.87% attenuation. In addition, compounds (1-4) were subjected to histamine-induced inflammation, where compounds 2 and 3 exhibited excellent effects 86.87 and 89.98%, respectively at 5 mg/kg after the 2nd hour of administration, whereas compounds 1 and 4 did not exhibit any significant effect as compared with the negative control. Molecular docking results revealed a very high potency of compound based on the protein-ligand interaction (PLI) profile, which was further evaluated through a molecular dynamic simulation study. Therefore, the anti-inflammatory effect of H. adenophyllum attributed to the presence of these bioactive compounds (1-4) strongly supports the traditional uses of H. adenophyllum for treatment of inflammation. However, compounds 2 and 3 which exerted anti-inflammatory effect must be subjected for further mechanistic studies.


Assuntos
Anti-Inflamatórios/administração & dosagem , Simulação por Computador , Simulação de Acoplamento Molecular/métodos , Extratos Vegetais/administração & dosagem , Plantas Medicinais , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/metabolismo , Sítios de Ligação/fisiologia , Relação Dose-Resposta a Droga , Edema/tratamento farmacológico , Edema/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/metabolismo , Estrutura Secundária de Proteína
11.
BMC Complement Med Ther ; 20(1): 237, 2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32711536

RESUMO

BACKGROUND: Analgesic, anti-inflammatory, and sedative drugs are available with potential side effects such as peptic ulcer and addiction among other things. In this regard, research is underway to find safe, effective, and economical drugs free of these side effects. In this study, an isolated natural product from Diospyros lotus, was tested for the aforementioned bioactivities. OBJECTIVES: To evaluate analgesic, anti-inflammatory, and sedative potential of D. lotus extracts in animal paradigms using BALB/c mice as experimental model. METHODS: Analgesic, anti-inflammatory and sedative activities of dinaphthodiospyrol G (1) isolated from the chloroform fraction of D. lotus were evaluated using different experimental procedures. Anti-inflammatory effect was evaluated using the carrageenan and histamine-induced paw edema, whereas the antinociceptive effect was quantified by means of the hot plate analgesiometer. On the other hand, the sedative effect was determined using animal assay for screening the locomotors effects of compound 1. Compound 1 was also subjected to molecular modeling studies against cyclooxygenase enzymes. RESULTS: Results from this investigation showed that the extract is devoid of anti-inflammatory and antinociceptive potentials but has a significant sedative effect, whereas the tested compound exhibited 55.23 and 78.34% attenuation in paw edema by carrageenan and histamine assays, respectively. A significant (p < 0.001) and dose-dependent antinociceptive and sedative effects were demonstrated by the isolated compound. Molecular docking and dynamics simulation studies of the isolated compound against cyclooxygenase enzyme indicated that compound 1 forms specific interactions with key residues in the active site of the target receptor, which validates the potential use of the isolated compound as cyclooxygenase inhibitor. CONCLUSIONS: Compound 1 exhibited remarkable analgesic, anti-inflammatory, and sedative activities. These findings strongly justify the traditional use of D. lotus in the treatment of inflammation, pain, and insomnia.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Diospyros , Hipnóticos e Sedativos/farmacologia , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Analgésicos/química , Animais , Anti-Inflamatórios/química , Modelos Animais de Doenças , Hipnóticos e Sedativos/química , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Paquistão , Extratos Vegetais/química , Raízes de Plantas
12.
Bioorg Chem ; 101: 103979, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32544738

RESUMO

(E)-3-(2-Benzylidenehydrazinyl)-5,6-diphenyl-1,2,4-triazines analogs 1-27 were synthesized by multi-step reaction scheme and subjected to in vitro inhibitory screening against α-amylase and α-glucosidase enzymes. Out of these twenty-seven synthetic analogs, ten compounds 14-17, 19, and 21-25 are structurally new. All compounds exhibited good to moderate inhibitory potential in terms of IC50 values ranging (IC50 = 13.02 ± 0.04-46.90 ± 0.05 µM) and (IC50 = 13.09 ± 0.08-46.44 ± 0.24 µM) in comparison to standard acarbose (IC50 = 12.94 ± 0.27 µM and 10.95 ± 0.08 µM), for α-amylase and α-glucosidase, respectively. Structure-activity relationship indicated that analogs with halogen substitution(s) were found more active as compared to compounds bearing other substituents. Kinetic studies on most active α-amylase and α-glucosidase inhibitors 5, 7, 9, 15, 24, and 27, suggested non-competitive and competitive types of inhibition mechanism for α-amylase and α-glucosidase, respectively. Molecular docking studies predicted the good protein-ligand interaction (PLI) profile with key interactions such as arene-arene, H-<, <-<, and <-H etc., against the corresponding targets.


Assuntos
Acarbose/uso terapêutico , Diabetes Mellitus Tipo 2/dietoterapia , Simulação de Acoplamento Molecular/métodos , Triazinas/química , alfa-Amilases/antagonistas & inibidores , alfa-Glucosidases/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
13.
Drug Des Devel Ther ; 13: 4195-4205, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849451

RESUMO

BACKGROUND: Cancer is one of the chronic health conditions worldwide. Various therapeutically active compounds from medicinal plants were the current focus of this research in order to uncover a treatment regimen for cancer. Anchusa arvensis (A. anchusa) (L.) M.Bieb. contains many biologically active compounds. METHODS: In the current study, new ester 3-hydroxyoctyl -5- trans-docosenoate (compound-1) was isolated from the chloroform soluble fraction of A. anchusa using column chromatography. Using MTT assay, the anticancer effect of the compound was determined in human hepatocellular carcinoma cells (HepG-2) compared with normal epithelial cell line (Vero). DPPH and ABTS radical scavenging assays were performed to assess the antioxidant potential. The Molecular Operating Environment (MOE-2016) tool was used against tyrosine kinase. RESULTS: The structure of the compound was elucidated based on IR, EI, and NMR spectroscopy technique. It exhibited a considerable cytotoxic effect against HepG-2 cell lines with IC50 value of 6.50 ± 0.70 µg/mL in comparison to positive control (doxorubicin) which showed IC50 value of 1.3±0.21 µg/mL. The compound did not show a cytotoxic effect against normal epithelial cell line (Vero). The compound also exhibited significant DPHH scavenging ability with IC50 value of 12 ± 0.80 µg/mL, whereas ascorbic acid, used as positive control, demonstrated activity with IC50 = 05 ± 0.15 µg/mL. Similarly, it showed ABTS radical scavenging ability (IC50 = 130 ± 0.20 µg/mL) compared with the value obtained for ascorbic acid (06 ± 0.85 µg/mL). In docking studies using MOE-2016 tool, it was observed that compound-1 was highly bound to tyrosine kinase by having two hydrogen bonds at the hinge region. This good bonding network by the compound might be one of the reasons for showing significant activity against this enzyme. CONCLUSION: Our findings led to the isolation of a new compound from A. anchusa which has significant cytotoxic activity against HepG-2 cell lines with marked antioxidant potential.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Benzotiazóis/antagonistas & inibidores , Compostos de Bifenilo/antagonistas & inibidores , Boraginaceae/química , Ésteres/farmacologia , Ácidos Graxos Monoinsaturados/farmacologia , Picratos/antagonistas & inibidores , Ácidos Sulfônicos/antagonistas & inibidores , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Chlorocebus aethiops , Simulação por Computador , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Ésteres/química , Ésteres/isolamento & purificação , Ácidos Graxos Monoinsaturados/química , Ácidos Graxos Monoinsaturados/isolamento & purificação , Células Hep G2 , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Plantas Medicinais , Relação Estrutura-Atividade , Células Vero
14.
Curr Top Med Chem ; 19(30): 2805-2813, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31702502

RESUMO

BACKGROUND: Liver cancer is a devastating cancer with increasing incidence and mortality rates worldwide. Plants possess numerous therapeutic properties, therefore the search for novel, naturally occurring cytotoxic compounds is urgently needed. METHODS: The anticancer activity of plant extracts and isolated compounds from Anchusa arvensis (A. arvensis) were studied against the cell culture of HepG-2 (human hepatocellular carcinoma cell lines) using 3-(4,5-Dimethylthiazol-yl)-diphenyl tetrazoliumbromide (MTT) assay. Apoptosis was investigated by performing Acridine orange -ethidium bromide staining, styox green assay and DNA interaction study. We also used tools for computational chemistry studies of isolated compounds with the tyrosine kinase. RESULTS: In MTT assay, the crude extract caused a significant cytotoxic effect with IC50 of 34.14 ± 0.9 µg/ml against HepG-2 cell lines. Upon fractionation, chloroform fraction (Aa.Chm) exhibited the highest antiproliferative activity with IC50 6.55 ± 1.2 µg/ml followed by ethyl acetate (Aa.Et) fraction (IC50, 24.59 ± 0.85 µg/ml) and n-hexane (Aa.Hex) fraction (IC50 29.53 ± 1.5µg/ml). However, the aqueous (Aa.Aq) fraction did not show any anti-proliferative activity. Bioactivity-guided isolation led to the isolation of two compounds which were characterized as para-methoxycatechol (1) and decane (2) through various spectroscopic techniques. Against HepG-2 cells, compound 1 showed marked potency with IC50 6.03 ± 0.75 µg/ml followed by 2 with IC50 18.52 ± 1.9 µg/ml. DMSO was used as a negative control and doxorubicin as a reference standard (IC50 1.3 ± 0.21 µg/ml). It was observed that compounds 1-2 caused apoptotic cell death evaluated by Acridine orange -ethidium bromide staining, styox green assay and DNA interaction study, therefore both compounds were tested for molecular docking studies against tyrosine kinase to support cytotoxic activity. CONCLUSION: This study revealed that the plant extracts and isolated compounds possess promising antiproliferative activity against HepG-2 cell lines via apoptotic cell death.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Boraginaceae/química , Extratos Vegetais/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Simulação de Acoplamento Molecular
15.
Bioorg Chem ; 88: 102955, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31054431

RESUMO

Bio-assay guided fractionation of the methanolic extract of Aloe vera resin and Lycium shawii stem successively afforded twenty three compounds; fourteen (1-14) from A. vera and nine (15-23) from L. shawii. All these compounds were characterized by 1D and 2D NMR spectroscopic techniques viz., 1H, 13C, DEPT, HSQC, HMBC, and COSY, and NEOSY, ESI-MS and compared with the reported literature. These compounds were assessed for their potential as urease inhibitors targeted in peptic ulcer. Among crude extracts and fractions of A. vera resin, n-butanol fraction (23.5 ±â€¯1.7 µg·mL-1) showed the most potent urease inhibition followed by methanol (30.9 ±â€¯0.3 µg/mL) and ethyl acetate (31.7 ±â€¯0.5 µg·mL-1). In case of L. shawii, ethyl acetate fraction exhibited the highest urease activity (41.0 ±â€¯1.4 µg/mL) trailed by dichloromethane (55.2 ±â€¯1.5 µg/mL) fraction. Among the isolates, compounds 7, 11 and 23 were found to be excellent urease inhibitors with IC50 values of 14.5 ±â€¯0.90 µM, (16.7 ±â€¯0.16 µM) and 14.0 ±â€¯0.8 µM, respectively. To the best of our knowledge, this is the first report on the urease enzyme inhibitory activity of the said compounds excluding compound 18. In addition, the urease activity of different fractions of L. shawii stem was also reported for the first time. The molecular docking studies showed that all the active compounds well accommodate in the active site of the urease enzyme by interacting with key amino acids.


Assuntos
Aloe/química , Produtos Biológicos/farmacologia , Inibidores Enzimáticos/farmacologia , Extratos Vegetais/farmacologia , Resinas Vegetais/química , Urease/antagonistas & inibidores , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Lycium/enzimologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Relação Estrutura-Atividade , Urease/metabolismo
16.
Microb Pathog ; 123: 419-425, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30075241

RESUMO

Elucidation of bioactive chemical compounds from rhizobacteria is highly utilized in pharmaceuticals and naturopathy, due to their health benefits to human and plants. In current study, four cyclopeptides along with one phenyl amide were isolated from the ethyl acetate extract of Bacillus velezensis sp. RA5401. Their structures were determined and characterized as cycle (L-prolyl-L-leucyl)2 (1), cyclo (L-prolyl-l-valine)2 (2), cycle (L-phenylanalyl-L-propyl)2 (3), cyclo (D-pro-L-tyr-L-pro-L-tyr)2 (4) and N-(2-phenylethyl)acetamide (5) on the basis of electron spray ionization mass spectrometry (ESI-MS), nuclear magnetic resonance (NMR) techniques and comparison with the literature data. The five compounds have been isolated for the first time from this species. The effect of various concentrations of these compounds on the proliferation of MDA-MB-231 breast cancer cells was examined. It was found that 1 and 2 induced concentration-independent anti-proliferative effects, while 3, 4 and 5 inhibited cancer cell proliferation in a concentration-dependent manner. Furthermore, to determine the suitable binding targets of these compounds within cancer cell line, detailed target prediction and comparative molecular-docking studies were performed. The compounds 1 and 2 hit intracellular anti-cancer targets of proteases family, while compounds 3, 4 and 5 interacted with different membrane receptors of G-Protein-Coupled Receptors (GPCRs). In conclusion, the Bacillus velezensis RA5401 can be an ideal strain to produce anti-proliferative constituents at industrial scale.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Bacillus/metabolismo , Proliferação de Células/efeitos dos fármacos , Simulação de Acoplamento Molecular , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Receptores Acoplados a Proteínas G/química , Bacillus/genética , Bacillus/isolamento & purificação , Linhagem Celular Tumoral/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Omã , RNA Ribossômico 16S/genética , Receptores Acoplados a Proteínas G/metabolismo , Metabolismo Secundário , Microbiologia do Solo
17.
Biomed Res Int ; 2018: 3868070, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29992141

RESUMO

BACKGROUND: Hypochaeris radicata (flatweed) from the family Asteraceae is a medicinal plant found in Europe, Middle East, and India. In folkloric medication, it is used to heal jaundice, dyspepsia, constipation, rheumatism, and hypoglycemia as well as renal problems. Leaves and roots of the plant have antioxidant and antibacterial properties. The plant is a rich source of pharmacologically active phytochemicals; however, it is explored scantily. The objective of the current study was to identify the chemical composition and investigate the in vivo biological potency of crude extracts of this plant. METHODS: The crude extract and the fractions were screened for various phytochemical groups of constituents following standard procedures. The acute toxicity was assayed for safe range of dose determination. The analgesic potential of the extract and fractions was assessed by acetic acid-induced writhing test. The muscle-relaxant activity was examined by standard inclined-plane test and traction test. Sedative potential of extract/fractions was assessed by using standard white wood procedures. Furthermore, docking analysis of two compounds present in the ethyl acetate fraction of the plant was assessed against 3D cyclooxygenase-1 and -2 (COX-1 and COX-2). RESULTS: The extract/fractions of H. radicata showed significant analgesic effect in in vivo model of peripheral algesia. The docking analysis of previously isolated molecules from the plant also exhibited promising interaction with COX-1 and COX-2. Also, the plant has a mild sedative and muscle-relaxant potential. Thus, our study provided pharmacological rationale for the traditional uses of the plant as analgesic and anti-inflammatory remedy. CONCLUSION: The crude extracts and fractions exhibited excellent activity due to active phytochemicals. These active phytochemicals also exhibited promising interaction with COX-1 and COX-2. These findings directed researcher to isolate active compounds from H. radicata which may be used as a potential source of active secondary metabolites.


Assuntos
Analgésicos/farmacologia , Asteraceae , Hipnóticos e Sedativos/farmacologia , Extratos Vegetais/farmacologia , Animais , Camundongos , Camundongos Endogâmicos BALB C
18.
Bioorg Chem ; 79: 179-189, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29763804

RESUMO

Despite of a diverse range of biological activities associated with chalcones and bis-chalcones, they are still neglected by the medicinal chemist for their possible α-amylase inhibitory activity. So, the current study is based on the evaluation of this class for the identification of new leads as α-amylase inhibitors. For that purpose, a library of substituted chalcones 1-13 and bis-chalcones 14-18 were synthesized and characterized by spectroscopic techniques EI-MS and 1H NMR. CHN analysis was carried out and found in agreement with the calculated values. All compounds were evaluated for in vitro α-amylase inhibitory activity and demonstrated good activities in the range of IC50 = 1.25 ±â€¯1.05-2.40 ±â€¯0.09 µM as compared to the standard acarbose (IC50 = 1.04 ±â€¯0.3 µM). Limited structure-activity relationship (SAR) was established by considering the effect of different groups attached to aryl rings on varying inhibitory activity. SMe group in chalcones and OMe group in bis-chalcones were found more influential on the activity than other groups. However, in order to predict the involvement of different groups in the binding interactions with the active site of α-amylase enzyme, in silico studies were also conducted.


Assuntos
Chalconas/farmacologia , Inibidores Enzimáticos/farmacologia , alfa-Amilases/antagonistas & inibidores , Chalconas/síntese química , Chalconas/química , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , alfa-Amilases/metabolismo
19.
Bioorg Chem ; 78: 427-435, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29698893

RESUMO

Three new norditerpenoids alkaloids, 1ß-hydroxy,14ß-acetyl condelphine (1), jadwarine-A (2), jadwarine-B (3) along with two known alkaloids isotalatizidine hydrate (4) and dihydropentagynine (5) were isolated from medicinal plant Delphinium denudatum. The structures of natural products 1-5 were established on the basis of HR-EIMS, 1H and 13C NMR (1D & 2D) spectroscopic data as well as by comparison from literature data. The structures of compound 1 and 4 were also confirmed by single crystal X-ray diffraction studies. In-vitro AChE and BChE enzyme inhibitory activities of compounds 1-5 and molecular docking studies were performed to investigate the possible molecular inhibitory mechanism of the isolated natural products. Compound 2, 4 and 5 showed competitive inhibitory effects by inhibiting AChE and BChE, respectively, while 1 and 3 showed non-competitive inhibition. This work is the first report that provides a supporting evidence about the use of constituents of Delphinium denudatum in cerebral dementia and Alzheimer diseases.


Assuntos
Acetilcolinesterase/metabolismo , Alcaloides/farmacologia , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Delphinium/química , Diterpenos/farmacologia , Alcaloides/química , Alcaloides/isolamento & purificação , Animais , Inibidores da Colinesterase/química , Inibidores da Colinesterase/isolamento & purificação , Diterpenos/química , Diterpenos/isolamento & purificação , Relação Dose-Resposta a Droga , Electrophorus , Cavalos , Conformação Molecular , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
20.
Sci Rep ; 7(1): 16980, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29209017

RESUMO

Current research is based on the identification of novel inhibitors of α-amylase enzyme. For that purpose, new hybrid molecules of hydrazinyl thiazole substituted chromones 5-27 were synthesized by multi-step reaction and fully characterized by various spectroscopic techniques such as EI-MS, HREI-MS, 1H-NMR and 13C-NMR. Stereochemistry of the iminic bond was confirmed by NOESY analysis of a representative molecule. All compounds 5-27 along with their intervening intermediates 1-4, were screened for in vitro α-amylase inhibitory, DPPH and ABTS radical scavenging activities. All compounds showed good inhibition potential in the range of IC50 = 2.186-3.405 µM as compared to standard acarbose having IC50 value of 1.9 ± 0.07 µM. It is worth mentioning that compounds were also demonstrated good DPPH (IC50 = 0.09-2.233 µM) and ABTS (IC50 = 0.584-3.738 µM) radical scavenging activities as compared to standard ascorbic acid having IC50 = 0.33 ± 0.18 µM for DPPH and IC50 = 0.53 ± 0.3 µM for ABTS radical scavenging activities. In addition to that cytotoxicity of the compounds were checked on NIH-3T3 mouse fibroblast cell line and found to be non-toxic. In silico studies were performed to rationalize the binding mode of compounds (ligands) with the active site of α-amylase enzyme.


Assuntos
Cromonas/farmacologia , Inibidores Enzimáticos/farmacologia , Sequestradores de Radicais Livres/farmacologia , alfa-Amilases/antagonistas & inibidores , Animais , Compostos de Bifenilo , Cromonas/química , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/química , Sequestradores de Radicais Livres/química , Espectrometria de Massas , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Células NIH 3T3 , Picratos , Relação Estrutura-Atividade , Tiazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA