Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 37(6): 1614-1627, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28073936

RESUMO

Some blind humans have developed echolocation, as a method of navigation in space. Echolocation is a truly active sense because subjects analyze echoes of dedicated, self-generated sounds to assess space around them. Using a special virtual space technique, we assess how humans perceive enclosed spaces through echolocation, thereby revealing the interplay between sensory and vocal-motor neural activity while humans perform this task. Sighted subjects were trained to detect small changes in virtual-room size analyzing real-time generated echoes of their vocalizations. Individual differences in performance were related to the type and number of vocalizations produced. We then asked subjects to estimate virtual-room size with either active or passive sounds while measuring their brain activity with fMRI. Subjects were better at estimating room size when actively vocalizing. This was reflected in the hemodynamic activity of vocal-motor cortices, even after individual motor and sensory components were removed. Activity in these areas also varied with perceived room size, although the vocal-motor output was unchanged. In addition, thalamic and auditory-midbrain activity was correlated with perceived room size; a likely result of top-down auditory pathways for human echolocation, comparable with those described in echolocating bats. Our data provide evidence that human echolocation is supported by active sensing, both behaviorally and in terms of brain activity. The neural sensory-motor coupling complements the fundamental acoustic motor-sensory coupling via the environment in echolocation.SIGNIFICANCE STATEMENT Passive listening is the predominant method for examining brain activity during echolocation, the auditory analysis of self-generated sounds. We show that sighted humans perform better when they actively vocalize than during passive listening. Correspondingly, vocal motor and cerebellar activity is greater during active echolocation than vocalization alone. Motor and subcortical auditory brain activity covaries with the auditory percept, although motor output is unchanged. Our results reveal behaviorally relevant neural sensory-motor coupling during echolocation.


Assuntos
Estimulação Acústica/métodos , Percepção Auditiva/fisiologia , Ecolocação/fisiologia , Localização de Som/fisiologia , Adulto , Animais , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto Jovem
2.
J Acoust Soc Am ; 116(3): 1826-31, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15478450

RESUMO

Recordings were made from white-beaked dolphins in Icelandic waters using a four-hydrophone array in a star configuration. The acoustic signals were amplified and sampled to a hard disk at a rate of 800 kHz per channel. The 3 and 10 dB beamwidths were calculated to be 8 degrees and 10 degrees, respectively, indicating a narrower transmission beam for white-beaked dolphins than that reported for bottlenose dolphins (Tursiops truncatus). The beamwidth was more similar to that found for belugas (Delphinapterus lucas). The measured beam pattern included large side lobes, perhaps due to the inclusion of off-axis clicks, even after applying several criteria to select only on-axis clicks. The directivity index was calculated to be 18 dB when using all data for angles from 0 degrees-50 degrees. The calculated sound radiation from a circular piston with a radius of 6 cm driven by a white-beaked dolphin click had a beam pattern very similar to the measured beam pattern for the main transmission lobe of the white-beaked dolphin. The directivity index was 29 dB. This is the first attempt to estimate the directionality index of dolphins in the field.


Assuntos
Golfinhos/fisiologia , Ecolocação/fisiologia , Vocalização Animal , Estimulação Acústica , Animais , Feminino , Masculino , Gravação em Fita
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA