RESUMO
Sotorasib is a first-in-class KRASG12C covalent inhibitor in clinical development for the treatment of tumors with the KRAS p.G12C mutation. A comprehensive nonclinical safety assessment package, including secondary/safety pharmacology and toxicology studies, was conducted to support the marketing application for sotorasib. Sotorasib was negative in a battery of genotoxicity assays and negative in an in vitro phototoxicity assay. Based on in vitro assays, sotorasib had no off-target effects against various receptors, enzymes (including numerous kinases), ion channels, or transporters. Consistent with the tumor-specific target distribution (ie, KRASG12C), there were no primary pharmacology-related on-target effects identified. The kidney was identified as a target organ in the rat but not the dog. Renal toxicity in the rat was characterized by tubular degeneration and necrosis restricted to a specific region suggesting that the toxicity was attributed to the local formation of a putative toxic reactive metabolite. In the 3-month dog study, adaptive changes of hepatocellular hypertrophy due to drug metabolizing enzyme induction were observed in the liver that was associated with secondary effects in the pituitary and thyroid gland. Sotorasib was not teratogenic and had no direct effect on embryo-fetal development in the rat or rabbit. Human, dog, and rat circulating metabolites, M24, M10, and M18, raised no clinically relevant safety concerns based on the general toxicology studies, primary/secondary pharmacology screening, an in vitro human ether-à-go-go-related gene assay, or mutagenicity assessment. Overall, the results of the nonclinical safety program support a high benefit/risk ratio of sotorasib for the treatment of patients with KRAS p.G12C-mutated tumors.
Assuntos
Antineoplásicos/toxicidade , Piperazinas/toxicidade , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Piridinas/toxicidade , Pirimidinas/toxicidade , Animais , Antineoplásicos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Piperazinas/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologiaRESUMO
BACKGROUND: Fractional exhaled nitric oxide is elevated in allergen-provoked asthma. The cellular and molecular source of the elevated fractional exhaled nitric oxide is, however, uncertain. OBJECTIVE: To investigate whether fractional exhaled nitric oxide is associated with increased airway epithelial inducible nitric oxide synthase (iNOS) in allergen-provoked asthma. METHODS: Fractional exhaled nitric oxide was measured in healthy controls (n = 14) and allergic asthmatics (n = 12), before and after bronchial provocation to birch pollen out of season. Bronchoscopy was performed before and 24 hours after allergen provocation. Bronchial biopsies and brush biopsies were processed for nitric oxide synthase activity staining with nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d), iNOS immunostaining, or gene expression analysis of iNOS by real-time PCR. NADPH-d and iNOS staining were quantified using automated morphometric analysis. RESULTS: Fractional exhaled nitric oxide and expression of iNOS mRNA were significantly higher in un-provoked asthmatics, compared to healthy controls. Allergic asthmatics exhibited a significant elevation of fractional exhaled nitric oxide after allergen provocation, as well as an accumulation of airway eosinophils. Moreover, nitric oxide synthase activity and expression of iNOS was significantly increased in the bronchial epithelium of asthmatics following allergen provocation. Fractional exhaled nitric oxide correlated with eosinophils and iNOS expression. CONCLUSION: Higher fractional exhaled nitric oxide concentration among asthmatics is associated with elevated iNOS mRNA in the bronchial epithelium. Furthermore, our data demonstrates for the first time increased expression and activity of iNOS in the bronchial epithelium after allergen provocation, and thus provide a mechanistic explanation for elevated fractional exhaled nitric oxide in allergen-provoked asthma.
Assuntos
Alérgenos , Asma/enzimologia , Brônquios/enzimologia , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/biossíntese , Pólen , RNA Mensageiro/metabolismo , Adulto , Asma/patologia , Brônquios/patologia , Testes de Provocação Brônquica , Estudos de Casos e Controles , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Expiração , Feminino , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , NADPH Desidrogenase/genética , NADPH Desidrogenase/metabolismo , Óxido Nítrico Sintase Tipo II/genética , RNA Mensageiro/genética , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologiaRESUMO
Mangosteen is a xanthone-containing fruit found in Southeast Asia for which health claims include maintaining healthy immune and gastrointestinal systems to slowing the progression of tumor growth and neurodegenerative diseases. Previous studies have identified multiple xanthones in the pericarp of the mangosteen fruit. The aim of the current study was to assess the drug inhibition potential of mangosteen in vitro as well as the cytochrome P450 (P450) enzymes responsible for the metabolism of its individual components. The various xanthone derivatives were found to be both substrates and inhibitors for multiple P450 isoforms. Aqueous extracts of the mangosteen pericarp were analyzed for xanthone content as well as inhibition potency. Finally, in vivo plasma concentrations of alpha-mangostin, the most abundant xanthone derivative found in mangosteen, were predicted using Simcyp and found to be well above their respective in vitro K(i) values for CYP2C8 and CYP2C9.
Assuntos
Inibidores das Enzimas do Citocromo P-450 , Inibidores Enzimáticos/farmacologia , Garcinia mangostana/química , Microssomos Hepáticos/enzimologia , Xantonas/farmacologia , Cromatografia Líquida de Alta Pressão , Inibidores Enzimáticos/química , Humanos , Técnicas In Vitro , Isoenzimas/antagonistas & inibidores , Cinética , Espectrometria de Massas , Microssomos Hepáticos/efeitos dos fármacos , NADP/metabolismo , Preparações Farmacêuticas/metabolismo , Fenótipo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Xantonas/químicaRESUMO
Over the past 15 years, a concerted effort has been undertaken by the pharmaceutical industry to reduce the attrition of clinical candidates resulting from undesirable ADME characteristics. Increasing regulatory and competitive pressures demand that pharmaceutical products brought to the market possess pristine safety and drug co-administration profiles for most therapeutic areas. The high-profile withdrawal of drugs such as mibefradil from the market because of unfavorable drug-drug interaction profiles has focused efforts on screening for cytochrome P450 (CYP)-mediated drug interactions early in the discovery paradigm and on predicting the impact of inhibition on the in vivo situation. This paper discusses current practices used to screen for CYP-mediated drug-drug interactions in vitro (inhibition and induction) and how these data are being used to predict whether a clinically relevant drug-drug interaction is likely to occur in vivo.
Assuntos
Sistema Enzimático do Citocromo P-450/fisiologia , Interações Medicamentosas , Animais , Simulação por Computador , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/biossíntese , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Indução Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , HumanosRESUMO
Herbal-based remedies are widely used as alternative treatments for a number of ailments. In addition, the use of products that contain both single and multiple herbal constituents is becoming increasingly common. The work described in this report examined the in vitro drug interaction potential for a commonly used herbal cold remedy reported to contain a mixture of eight herbal components. Experiments conducted in human liver microsomes exhibited significant inhibition (<10% of control activity remaining) of multiple cytochrome P450 (P450) isoforms, including CYP2B6, CYP2C9, and CYP2D6, by the herbal mixture. In an attempt to explain the observed P450 inhibition by the herbal mixture, individual active components were obtained and tested for inhibitory potency. Inhibition of multiple P450 activities by a single constituent, luteolin, was observed. Conversely, inhibition of a single isoform by several herbal components was noted for CYP2B6. Based on the data presented, it is concluded that mixtures of herbal components may exhibit multiple modes of P450 inhibition, indicating the potential for complex herbal-drug interaction scenarios to occur.