Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Food Chem Toxicol ; 186: 114537, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417538

RESUMO

Increases in botanical use, encompassing herbal medicines and dietary supplements, have underlined a critical need for an advancement in safety assessment methodologies. However, botanicals present unique challenges for safety assessment due to their complex and variable composition arising from diverse growing conditions, processing methods, and plant varieties. Historically, botanicals have been largely evaluated based on their history of use information, based primarily on traditional use or dietary history. However, this presumption lacks comprehensive toxicological evaluation, demanding innovative and consistent assessment strategies. To address these challenges, the Botanical Safety Consortium (BSC) was formed as an international, cross-sector forum of experts to identify fit-for purpose assays that can be used to evaluate botanical safety. This global effort aims to assess botanical safety assessment methodologies, merging traditional knowledge with modern in vitro and in silico assays. The ultimate goal is to champion the development of toxicity tools for botanicals. This manuscript highlights: 1) BSC's strategy for botanical selection, sourcing, and preparation of extracts to be used in in vitro assays, and 2) the approach utilized to characterize botanical extracts, using green tea and Asian ginseng as examples, to build confidence for use in biological assays.


Assuntos
Plantas Medicinais , Suplementos Nutricionais , Chá
2.
Environ Mol Mutagen ; 63(8-9): 389-399, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36323641

RESUMO

Black cohosh (BC; Actaea racemosa L.), a top-selling botanical dietary supplement, is marketed to women primarily to ameliorate a variety of gynecological symptoms. Due to widespread usage, limited safety information, and sporadic reports of hepatotoxicity, the Division of the National Toxicology Program (DNTP) initially evaluated BC extract in female rats and mice. Following administration of up to 1000 mg/kg/day BC extract by gavage for 90 days, dose-related increases in micronucleated peripheral blood erythrocytes were observed, along with a nonregenerative macrocytic anemia resembling megaloblastic anemia in humans. Because both micronuclei and megaloblastic anemia may signal disruption of folate metabolism, and inadequate folate levels in early pregnancy can adversely affect neurodevelopment, the DNTP conducted a pilot cross-sectional study comparing erythrocyte micronucleus frequencies, folate and B12 levels, and a variety of hematological and clinical chemistry parameters between women who used BC and BC-naïve women. Twenty-three women were enrolled in the BC-exposed group and 28 in the BC-naïve group. Use of any brand of BC-only supplement for at least 3 months was required for inclusion in the BC-exposed group. Supplements were analyzed for chemical composition to allow cross-product comparisons. All participants were healthy, with no known exposures (e.g., x-rays, certain medications) that could influence study endpoints. Findings revealed no increased micronucleus frequencies and no hematological abnormalities in women who used BC supplements. Although reassuring, a larger, prospective study with fewer confounders (e.g., BC product diversity and duration of use) providing greater power to detect subtle effects would increase confidence in these findings.


Assuntos
Anemia Megaloblástica , Cimicifuga , Gravidez , Humanos , Feminino , Ratos , Camundongos , Animais , Estudos Transversais , Cimicifuga/efeitos adversos , Estudos Prospectivos , Suplementos Nutricionais/toxicidade , Ácido Fólico
3.
Food Chem Toxicol ; 160: 112769, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34929352

RESUMO

Black cohosh (Actaea racemosa L.) is a botanical supplement marketed to women of all ages. Due to paucity of data to assess the safe use, the National Toxicology Program (NTP) is evaluating the toxicity of black cohosh. The use of an authentic, quality material is imperative to generate robust data. Because botanical materials are complex mixtures with variable composition, the selection of a material is challenging. We describe selection and phytochemical characterization of an unformulated black cohosh root extract (i.e., an extract that serves as source material for a formulated product) to be used in the NTP assessments. A material was selected using a combination of non-targeted and targeted chemical analyses, including confirmation of authenticity, absence of contaminants and adulterants, and similarity to a popular black cohosh product used by consumers. Thirty-nine constituents covering three major classes, triterpene glycosides, phenolic acids, and alkaloids were identified. Among constituents quantified, triterpene glycosides made up approximately 4.7% (w/w) with total constituents quantified making up 5.8% (w/w) of the extract. Non-targeted chemical analysis followed by chemometric analysis of various materials sold as black cohosh, and reference materials for black cohosh and other Actaea species further confirmed the suitability of the selected extract for use.


Assuntos
Cimicifuga/química , Extratos Vegetais/química , Alcaloides/química , Cromatografia Líquida de Alta Pressão , Contaminação de Medicamentos , Glicosídeos/química , Hidroxibenzoatos/química , Espectrometria de Massas , Triterpenos/química
5.
Toxicol Appl Pharmacol ; 412: 115395, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33421504

RESUMO

Vanadium is a ubiquitous environmental contaminant that exists in multiple oxidation states. Humans are exposed to vanadyl (V4+) and vanadate (V5+) from dietary supplements, food, and drinking water and hence there is a concern for adverse human health. The current investigation is aimed at identifying vanadium oxidation states in vitro and in vivo and internal concentrations following exposure of rats to vanadyl sulfate (V4+) or sodium metavanadate (V5+) via drinking water for 14 d. Investigations in simulated gastric and intestinal fluids showed that V4+ was stable in gastric fluid while V5+ was stable in intestinal fluid. Analysis of rodent plasma showed that the only vanadium present was V4+, regardless of the exposed compound suggesting conversion of V5+ to V4+ in vivo and/or instability of V5+ species in biological matrices. Plasma, blood, and liver concentrations of total vanadium, after normalizing for vanadium dose consumed, were higher in male and female rats following exposure to V5+ than to V4+. Following exposure to either V4+ or V5+, the total vanadium concentration in plasma was 2- to 3-fold higher than in blood suggesting plasma as a better matrix than blood for measuring vanadium in future work. Liver to blood ratios were 4-7 demonstrating significant tissue retention following exposure to both compounds. In conclusion, these data point to potential differences in absorption and disposition properties of V4+ and V5+ salts and may explain the higher sensitivity in rats following drinking water exposure to V5+ than V4+ and highlights the importance of internal dose determination in toxicology studies.


Assuntos
Vanadatos/farmacocinética , Compostos de Vanádio/farmacocinética , Administração Oral , Animais , Carga Corporal (Radioterapia) , Água Potável , Feminino , Suco Gástrico/química , Absorção Gastrointestinal , Secreções Intestinais/química , Fígado/metabolismo , Masculino , Oxirredução , Ratos Sprague-Dawley , Distribuição Tecidual , Toxicocinética , Vanadatos/administração & dosagem , Vanadatos/sangue , Vanadatos/toxicidade , Compostos de Vanádio/administração & dosagem , Compostos de Vanádio/sangue , Compostos de Vanádio/toxicidade
6.
Anal Bioanal Chem ; 412(25): 6789-6809, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32865633

RESUMO

Ginkgo biloba extract (GbE) is a dietary supplement derived from an ethanolic extract of Ginkgo biloba leaves. Unfinished bulk GbE is used to make finished products that are sold as dietary supplements. The variable, complex composition of GbE makes it difficult to obtain consistent toxicological assessments of potential risk. The National Toxicology Program (NTP) observed hepatotoxicity in its rodent studies of a commercially available, unfinished GbE product, but the application of these results to the broader GbE supplement market is unclear. Here, we use a combination of non-targeted and targeted chromatographic and spectrophotometric methods to obtain profiles of 24 commercially available finished GbE products and unfinished standardized and unstandardized extracts with and without hydrolysis, then used principal component analysis to group unfinished products according to their similarity to each other and to National Institute of Standards and Technology (NIST) standard reference materials (SRM), and the finished products. Unfinished products were grouped into those that were characteristic and uncharacteristic of standardized GbE. Our work demonstrates that different analytical approaches produced similar classifications of characteristic and uncharacteristic products in unhydrolyzed samples, but the distinctions largely disappeared once the samples were hydrolyzed. Using our approach, the NTP GbE was most similar to two unfinished GbE products classified as characteristic, finished products, and the NIST GbE SRM. We propose that a simple analysis for the presence, absence, or amounts of compounds unique to GbE in unhydrolyzed samples could be sufficient to determine a sample's authenticity.Graphical abstract.


Assuntos
Ginkgo biloba/química , Compostos Fitoquímicos/análise , Extratos Vegetais/química , Cromatografia Líquida de Alta Pressão/métodos , Suplementos Nutricionais , Espectroscopia de Ressonância Magnética/métodos , Folhas de Planta/química , Padrões de Referência , Reprodutibilidade dos Testes
7.
Food Chem Toxicol ; 137: 111125, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31931071

RESUMO

Botanical dietary supplements (BDS) are used around the world for many purported therapeutic properties. The selection of an authentic product and it's phytochemical characterization is critical to generate robust safety data. Because botanicals are complex mixtures with variable quality, identification of a representative product for testing has been challenging. Echinacea is used for its purported immune stimulant properties and was listed as the 2nd top-selling BDS in 2018. However, there are limited safety data for Echinacea. Hence, the National Toxicology Program (NTP) has selected Echinacea for safety testing using rodent models. Here, we describe selection and comprehensive characterization of an Echinacea purpurea root extract to be used in the NTP testing program. Using non-targeted chemical analyses combined with chemometric analysis, a potential unfinished product (i.e., an extract that serves as source material for finished products) of Echinacea purpurea was selected. The product was then authenticated using chemical and DNA techniques and characterized, including the phytochemical composition. Among numerous constituents identified, caftaric acid, chicoric acid, chlorogenic acid and dodeca-2(E),4(E),8(Z),10(E/Z)-tetraenoic acid isobutylamide made up a small fraction of the extract. Based on these analyses, an approach is proposed for test article selection for Echinacea research which can be adapted to other botanicals.


Assuntos
Echinacea/química , Compostos Fitoquímicos/química , Extratos Vegetais/química , Suplementos Nutricionais/análise , Contaminação de Medicamentos/prevenção & controle , Echinacea/classificação , Echinacea/genética , Controle de Qualidade
8.
Toxicol Sci ; 172(2): 316-329, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504990

RESUMO

Botanical dietary supplements are complex mixtures with numerous potential sources of variation along the supply chain from raw plant material to the market. Approaches for determining sufficient similarity (ie, complex mixture read-across) may be required to extrapolate efficacy or safety data from a tested sample to other products containing the botanical ingredient(s) of interest. In this work, screening-level approaches for generating both chemical and biological-response profiles were used to evaluate the similarity of black cohosh (Actaea racemosa) and Echinacea purpurea samples to well-characterized National Toxicology Program (NTP) test articles. Data from nontargeted chemical analyses and gene expression of toxicologically important hepatic receptor pathways (aryl hydrocarbon receptor [AhR], constitutive androstane receptor [CAR], pregnane X receptor [PXR], farnesoid X receptor [FXR], and peroxisome proliferator-activated receptor alpha [PPARα]) in primary human hepatocyte cultures were used to determine similarity through hierarchical clustering. Although there were differences in chemical profiles across black cohosh samples, these differences were not reflected in the biological-response profiles. These findings highlight the complexity of biological-response dynamics that may not be reflected in chemical composition profiles. Thus, biological-response data could be used as the primary basis for determining similarity among black cohosh samples. Samples of E. purpurea displayed better correlation in similarity across chemical and biological-response measures. The general approaches described herein can be applied to complex mixtures with unidentified active constituents to determine when data from a tested mixture (eg, NTP test article) can be used for hazard identification of sufficiently similar mixtures, with the knowledge of toxicological targets informing assay selection when possible.


Assuntos
Cimicifuga/química , Suplementos Nutricionais , Echinacea/química , Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Preparações de Plantas/química , Preparações de Plantas/toxicidade , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Cultivadas , Receptor Constitutivo de Androstano , Hepatócitos/metabolismo , Humanos , PPAR alfa/genética , Receptor de Pregnano X/genética , Cultura Primária de Células , Receptores de Hidrocarboneto Arílico/genética , Receptores Citoplasmáticos e Nucleares/genética
9.
Food Chem Toxicol ; 131: 110586, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31202939

RESUMO

Ginkgo biloba extract (GBE) is a popular botanical dietary supplement used worldwide and the safety of use is a public health concern. While GBE is a complex mixture, the terpene trilactones and flavonol glycosides are believed to elicit the pharmacological and/or toxicological effects of GBE. In a National Toxicology Program (NTP) 2-year rodent bioassay with GBE, hepatotoxicity was observed in rodents (≥100 mg/kg in rats, ≥ 200 mg/kg in mice). Subsequently, questions arose about whether or not the GBE used in NTP studies was representative of other GBE products and how rodent doses are related to human doses. To address these, we generated systemic exposure data for terpene trilactones in male rats following oral administration of 30, 100, and 300 mg/kg GBE test article from the 2-year bioassay. Dose-normalized Cmax and AUC∞ for terpene trilactones from the current study were within 5-fold of published rodent studies using a standardized GBE preparation. Comparison of our rat systemic exposure data at 100 mg/kg GBE to published human data following ingestion of 240 mg GBE-containing product showed that the rat/human exposure multiple was 3-22, for terpene trilactones. These data demonstrate the relevance of NTP rodent toxicity data to humans.


Assuntos
Ginkgo biloba/química , Extratos Vegetais/farmacocinética , Administração Oral , Animais , Flavonóis/sangue , Ginkgolídeos/sangue , Humanos , Masculino , Extratos Vegetais/administração & dosagem , Extratos Vegetais/metabolismo , Extratos Vegetais/toxicidade , Ratos Endogâmicos F344 , Toxicocinética
11.
Food Chem Toxicol ; 121: 194-202, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30170118

RESUMO

Botanical dietary supplements are complex mixtures containing one or more botanical ingredient(s), each containing numerous constituents potentially responsible for its purported biological activity. Absorption, distribution, metabolism, and excretion (ADME) data are critical to understand the safety of botanical dietary supplements, including their potential for pharmacokinetic botanical-drug or botanical-botanical interactions. However, ADME data for botanical dietary supplements are rarely available and frequently inadequate to characterize their fate in vivo. Based on an assessment of the current status of botanical dietary supplements ADME research, the following key areas are identified that require robust data for human safety assessment: 1) phytochemical characterization including contaminant analysis and botanical authentication; 2) in vitro and/or in vivo data for identifying potential botanical-botanical or botanical-drug interactions and active/marker constituents; 3) robust ADME study design to include systemic exposure data on active/marker constituents using traditional or novel analytical chemistry and statistical approaches such as poly-pharmacokinetics; and 4) investigation of human relevance. A case study with Ginkgo biloba extract is used to highlight the challenges and proposed approaches in using ADME data for human safety assessment of botanical dietary supplements.


Assuntos
Suplementos Nutricionais , Compostos Fitoquímicos/farmacocinética , Animais , Ginkgo biloba , Interações Ervas-Drogas , Humanos , Extratos Vegetais/farmacocinética , Xenobióticos/farmacocinética
12.
Toxicol Pathol ; 46(5): 564-573, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29806545

RESUMO

There was a significant increase in the incidence of retinal degeneration in F344/N rats chronically exposed to Kava kava extract (KKE) in National Toxicology Program (NTP) bioassay. A retrospective evaluation of these rat retinas indicated a similar spatial and morphological alteration as seen in light-induced retinal degeneration in albino rats. Therefore, it was hypothesized that KKE has a potential to exacerbate the light-induced retinal degeneration. To investigate the early mechanism of retinal degeneration, we conducted a 90-day F344/N rat KKE gavage study at doses of 0 and 1.0 g/kg (dose which induced retinal degeneration in the 2-year NTP rat KKE bioassay). The morphological evaluation indicated reduced number of phagosomes in the retinal pigment epithelium (RPE) of the superior retina. Transcriptomic alterations related to retinal epithelial homeostasis and melatoninergic signaling were observed in microarray analysis. Phagocytosis of photoreceptor outer segment by the underlying RPE is essential to maintain the homeostasis of the photoreceptor layer and is regulated by melatonin signaling. Therefore, reduced photoreceptor outer segment disc shedding and subsequent lower number of phagosomes in the RPE and alterations in the melatonin pathway may have contributed to the increased incidences of retinal degeneration observed in F344/N rats in the 2-year KKE bioassay.


Assuntos
Kava/química , Fagocitose/efeitos dos fármacos , Fagossomos/efeitos dos fármacos , Extratos Vegetais/toxicidade , Degeneração Retiniana/induzido quimicamente , Pigmentos da Retina/metabolismo , Animais , Masculino , Fagossomos/ultraestrutura , Extratos Vegetais/isolamento & purificação , Ratos Endogâmicos F344 , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/ultraestrutura , Transcriptoma/efeitos dos fármacos
13.
Food Chem Toxicol ; 118: 328-339, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29752982

RESUMO

Botanical dietary supplements are complex mixtures that can be highly variable in composition and quality, making safety evaluation difficult. A key challenge is determining how diverse products in the marketplace relate to chemically and toxicologically characterized reference samples (i.e., how similar must a product be in order to be well-represented by the tested reference sample?). Ginkgo biloba extract (GBE) was used as a case study to develop and evaluate approaches for determining sufficient similarity. Multiple GBE extracts were evaluated for chemical and biological-response similarity. Chemical similarity was assessed using untargeted and targeted chemistry approaches. Biological similarity was evaluated using in vitro liver models and short-term rodent studies. Statistical and data visualization methods were then used to make decisions about the similarity of products to the reference sample. A majority of the 26 GBE samples tested (62%) were consistently determined to be sufficiently similar to the reference sample, while 27% were different from the reference GBE, and 12% were either similar or different depending on the method used. This case study demonstrated that approaches to evaluate sufficient similarity allow for critical evaluation of complex mixtures so that safety data from the tested reference can be applied to untested materials.


Assuntos
Extratos Vegetais/química , Extratos Vegetais/farmacologia , Animais , Bioensaio , Regulação da Expressão Gênica/efeitos dos fármacos , Ginkgo biloba , Hepatócitos , Humanos , Fitoterapia , Ratos , Equivalência Terapêutica
14.
Clin Pharmacol Ther ; 104(3): 429-431, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29745419

RESUMO

The National Toxicology Program's (NTP) mission is "to evaluate agents of public health concern, by developing and applying the tools of modern toxicology and molecular biology." Botanical dietary supplements (BDS) represent agents of public health concern due to widespread exposure to high doses, a lack of safety data for most products, variable quality, and reports of adverse events. This commentary will address lessons learned in NTP testing activities with BDS and recommendations for moving forward.


Assuntos
Qualidade de Produtos para o Consumidor , Suplementos Nutricionais/efeitos adversos , Segurança do Paciente , Farmacovigilância , Fitoterapia/efeitos adversos , Preparações de Plantas/efeitos adversos , Controle de Qualidade , Testes de Toxicidade , Animais , Qualidade de Produtos para o Consumidor/normas , Suplementos Nutricionais/normas , Humanos , Segurança do Paciente/normas , Fitoterapia/normas , Preparações de Plantas/normas , Melhoria de Qualidade , Medição de Risco , Testes de Toxicidade/normas
15.
Environ Mol Mutagen ; 59(5): 416-426, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29668046

RESUMO

Black cohosh extract (BCE) is a widely used dietary supplement marketed to women to alleviate symptoms of gynecological ailments, yet its toxicity has not been well characterized. The National Toxicology Program (NTP) previously reported significant increases in micronucleated erythrocytes in peripheral blood of female Wistar Han rats and B6C3F1/N mice administered 15-1,000 mg BCE/kg/day by gavage for 90 days. These animals also developed a dose-dependent nonregenerative macrocytic anemia characterized by clinical changes consistent with megaloblastic anemia. Both micronuclei (MN) and megaloblastic anemia can arise from disruption of the folate metabolism pathway. The NTP used in vitro approaches to investigate whether the NTP's test lot of BCE, BCEs from various suppliers, and root powders from BC and other cohosh species, were genotoxic in general, and to gain insight into the mechanism of action of BCE genotoxicity. Samples were tested in human TK6 lymphoblastoid cells using the In Vitro MicroFlow® MN assay. The NTP BCE and a BC extract reference material (XRM) were tested in the MultiFlow® DNA Damage assay, which assesses biomarkers of DNA damage, cell division, and cytotoxicity. The NTP BCE and several additional BCEs were tested in bacterial mutagenicity assays. All samples induced MN when cells were grown in physiological levels of folic acid. The NTP BCE and BC XRM produced activity patterns consistent with an aneugenic mode of action. The NTP BCE and five additional BCEs were negative in bacterial mutagenicity tests. These findings show that black cohosh preparations induce chromosomal damage and may pose a safety concern. Environ. Mol. Mutagen. 59:416-426, 2018. © 2018 Published 2018. This article is a US Government work and is in the public domain in the USA.


Assuntos
Cimicifuga/efeitos adversos , Dano ao DNA/efeitos dos fármacos , Suplementos Nutricionais/efeitos adversos , Mutagênicos/efeitos adversos , Anemia Megaloblástica/induzido quimicamente , Animais , Biomarcadores , Linhagem Celular , Relação Dose-Resposta a Droga , Eritrócitos/efeitos dos fármacos , Eritrócitos/patologia , Ácido Fólico/metabolismo , Humanos , Camundongos , Micronúcleos com Defeito Cromossômico , Testes para Micronúcleos , Ratos
16.
Birth Defects Res ; 110(10): 883-896, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29460393

RESUMO

Dietary supplement and natural product use is increasing within the United States, resulting in growing concern for exposure in vulnerable populations, including young adults and women of child-bearing potential. Vinpocetine is a semisynthetic derivative of the Vinca minor extract, vincamine. Human exposure to vinpocetine occurs through its use as a dietary supplement for its purported nootropic and neuroprotective effects. To investigate the effects of vinpocetine on embryo-fetal development, groups of 25 pregnant Sprague-Dawley rats and 8 pregnant New Zealand White rabbits were orally administered 0, 5, 20, or 60 mg vinpocetine/kg and 0, 25, 75, 150, or 300 mg/kg daily from gestational day (GD) 6-20 and GD 7-28, respectively. Pregnant rats dosed with vinpocetine demonstrated dose-dependent increases in postimplantation loss, higher frequency of early and total resorptions, lower fetal body weights, and fewer live fetuses following administration of 60 mg/kg, in the absence of maternal toxicity. Additionally, the rat fetuses displayed dose-dependent increases in the incidences of ventricular septum defects and full supernumerary thoracolumbar ribs. Similarly, albeit at higher doses than the rats, pregnant rabbits administered vinpocetine displayed an increase in postimplantation loss and fewer live fetuses (300 mg/kg), in addition to significantly lower fetal body weights (≥75 mg/kg). In conclusion, vinpocetine exposure resulted in similar effects on embryo-fetal development in the rat and rabbit. The species differences in sensitivity and magnitude of response is likely attributable to a species difference in metabolism. Taken together, these data suggest a potential hazard for pregnant women who may be taking vinpocetine.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Fetal/efeitos dos fármacos , Alcaloides de Vinca/efeitos adversos , Anormalidades Induzidas por Medicamentos , Animais , Suplementos Nutricionais/efeitos adversos , Feminino , Peso Fetal/efeitos dos fármacos , Feto/efeitos dos fármacos , Exposição Materna , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Coelhos , Ratos , Ratos Sprague-Dawley
17.
Toxicol Pathol ; 45(5): 614-623, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28618975

RESUMO

Black cohosh rhizome, available as a dietary supplement, is most commonly marketed as a remedy for dysmenorrhea and menopausal symptoms. A previous subchronic toxicity study of black cohosh dried ethanolic extract (BCE) in female mice revealed a dose-dependent ineffective erythropoiesis with a macrocytosis consistent with the condition known as megaloblastic anemia. The purpose of this study was to investigate potential mechanisms by which BCE induces these particular hematological changes. B6C3F1/N female mice (32/group) were exposed by gavage to vehicle or 1,000 mg/kg BCE for 92 days. Blood samples were analyzed for hematology, renal and hepatic clinical chemistry, serum folate and cobalamin, red blood cell (RBC) folate, and plasma homocysteine and methylmalonic acid (MMA). Folate levels were measured in liver and kidney. Hematological changes included decreased RBC count; increased mean corpuscular volume; and decreased reticulocyte, white blood cell, neutrophil, and lymphocyte counts. Blood smear evaluation revealed increased Howell-Jolly bodies and occasional basophilic stippling in treated animals. Plasma homocysteine and MMA concentrations were increased in treated animals. Under the conditions of our study, BCE administration caused hematological and clinical chemistry changes consistent with a functional cobalamin, and possibly folate, deficiency. Further studies are needed to elucidate the mechanism by which BCE causes increases in homocysteine and MMA.


Assuntos
Cimicifuga/toxicidade , Extratos Vegetais/toxicidade , Deficiência de Vitamina B 12/induzido quimicamente , Anemia Megaloblástica/induzido quimicamente , Animais , Peso Corporal/efeitos dos fármacos , Feminino , Ácido Fólico/sangue , Homocisteína/sangue , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Ácido Metilmalônico/sangue , Camundongos , Tetra-Hidrofolato Desidrogenase , Vitamina B 12/sangue
18.
Toxicol Rep ; 3: 531-538, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28042531

RESUMO

BACKGROUND: The National Toxicology Program (NTP) performed short-term toxicity studies of tetra- and pentavalent vanadium compounds, vanadyl sulfate and sodium metavanadate, respectively. Due to widespread human exposure and a lack of chronic toxicity data, there is concern for human health following oral exposure to soluble vanadium compounds. OBJECTIVES: To compare the potency and toxicological profile of vanadyl sulfate and sodium metavanadate using a short-term in vivo toxicity assay. METHODS: Adult male and female Harlan Sprague Dawley (HSD) rats and B6C3F1/N mice, 5 per group, were exposed to vanadyl sulfate or sodium metavanadate, via drinking water, at concentrations of 0, 125, 250, 500, 1000 or 2000 mg/L for 14 days. Water consumption, body weights and clinical observations were recorded throughout the study; organ weights were collected at study termination. RESULTS: Lower water consumption, up to -80% at 2000 mg/L, was observed at most exposure concentrations for animals exposed to either vanadyl sulfate or sodium metavanadate and was accompanied by decreased body weights at the highest concentrations for both compounds. Animals in the 1000 and 2000 mg/L sodium metavanadate groups were removed early due to overt toxicity. Thinness was observed in high-dose animals exposed to either compound, while lethargy and abnormal gait were only observed in vanadate-exposed animals. CONCLUSIONS: Based on clinical observations and overt toxicity, sodium metavanadate appears to be more toxic than vanadyl sulfate. Differential toxicity cannot be explained by differences in total vanadium intake, based on water consumption, and may be due to differences in disposition or mechanism of toxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA