Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Invest Ophthalmol Vis Sci ; 60(13): 4097-4108, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31574535

RESUMO

Purpose: Investigate a significant, dose-related increase in IOP, leading to glaucomatous damage to the neuroretina and optic nerve following intravitreal (ITV) administration of a bispecific F(ab')2 [anti-VEGF/Angiopoietins [ANGPT]F(ab')2] molecule in adult monkeys. Methods: ITV ocular tolerability and investigation of anti-VEGF/ANGPT F(ab')2 (blocking both ANGPT1 and ANGPT2) was done in monkeys; mechanistic studies were done in neonatal mice. Results: Following the second ITV dose of anti-VEGF/ANGPT F(ab')2, all 1.5- and 4-mg/eye treated monkeys developed elevated IOP, which eventually was associated with optic disc cupping and thinning of the neuroretinal rim. Histopathologic examination showed nonreversible axonal degeneration in the optic nerves of animals administered 1.5 mg/eye and higher that was considered secondary to high IOP. Anti-ANGPT Fab also caused elevated IOP in monkeys, but anti-VEGF Fab did not contribute to the IOP increase. In addition, an anti-ANGPT2-selective antibody did not change IOP. In mice simultaneous blockade of ANGPT1 and ANGPT2 impaired the expansion and formation of Schlemm's canal (SC) vessels, similar to genetic ablation of Angpt1/Angpt2 and their receptor TIE2. As previously reported, blocking ANGPT2 alone did not affect SC formation in mice. Conclusions: Dual inhibition of ANGPT1/ANGPT2, but not ANGPT2 alone, leads to increased IOP and glaucomatous damage in monkeys. This confirms a role for TIE2/ANGPT signaling in the control of IOP in adults, a finding initially identified in transgenic mice. Dual pharmacologic inhibition of ANGPT1/ANGPT2 may affect aqueous drainage and homeostasis in adult monkeys and may be useful in developing novel models of glaucoma.


Assuntos
Angiopoietina-1/antagonistas & inibidores , Angiopoietina-2/antagonistas & inibidores , Humor Aquoso/metabolismo , Glaucoma/fisiopatologia , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Angiopoietina-1/fisiologia , Angiopoietina-2/fisiologia , Animais , Anticorpos/farmacologia , Pressão Intraocular , Primatas , Fator A de Crescimento do Endotélio Vascular/fisiologia
2.
AAPS J ; 19(6): 1656-1668, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28795351

RESUMO

Therapeutic breakthroughs in a number of retinal degenerative diseases have come about through the development of biotherapeutics administered directly into the eye. As a consequence of their use, we have gained more insight into the immune privileged status of the eye and the various considerations that development, manufacturing, and use of these drugs require. It has been observed that therapeutic proteins injected into the vitreous can elicit an immune response resulting in the production of anti-drug antibodies (ADAs) which can have clinical consequences. This review includes discussion of the anatomy, physiology, and specific area of the eye that are targeted for drug administration. The various immunologic mechanisms involved in the immune responses to intraocularly administered protein are discussed. This review entails discussion on chemistry, manufacturing, and control (CMC) and formulation-related issues that may influence the risk of immunogenicity. Based on the available immunogenicity profile of the marketed intraocular drugs and their reported adverse events, the animal models and the translational gap from animals to human are discussed. Thus, the objective of this review article is to assess the factors that influence immunogenicity in relation to intraocular administration and the steps taken for mitigating immunogenicity risks.


Assuntos
Produtos Biológicos/imunologia , Terapia Biológica , Oftalmopatias/tratamento farmacológico , Animais , Humanos
3.
J Immunol Methods ; 408: 1-12, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24861938

RESUMO

Many biotherapeutics currently in development have complex mechanisms of action and contain more than one domain, each with a specific role or function. Examples include antibody-drug conjugates (ADC), PEGylated, fusion proteins and bi-specific antibodies. As with any biotherapeutic molecule, a multi-domain biotherapeutic (MDB) can elicit immune responses resulting in the production of specific anti-drug antibodies (ADA) when administered to patients. As it is beneficial to align industry standards for evaluating immunogenicity of MDBs, this paper highlights pertinent immunogenicity risk factors and describes steps involved in the design of a testing strategy to detect and characterize binding (non-neutralizing and neutralizing, NAb) ADAs. In a common tier based approach, samples identified as ADA screen positive are confirmed for the binding specificity of the antibodies to the drug molecule via a confirmatory assay. The confirmation of specificity is generally considered as a critical step of the tier based approach in overall ADA response evaluation. Further characterization of domain specificity of polyclonal anti-MDB ADA response may be required based on the analysis of molecule specific risk factors. A risk based approach in evaluating the presence of NAbs for MDB is discussed in this article. Analysis of domain-specific neutralizing antibody reactivity should be based on the risk assessment as well as the information learned during binding ADA evaluation. Situations where additional characterization of NAb specificity is possible and justified are discussed. Case studies demonstrating applicability of the risk factor based approach are presented. In general, the presence of a domain with high immunogenicity risk or presence of a domain with high endogenous protein homology may result in an overall high immunogenicity risk level for the entire MDB and can benefit from domain specificity characterization of immune response. For low immunogenicity risk MDBs, domain specificity characterization could be re-considered at later clinical phases based on the need to explain specific clinical observations. Inclusion of domain specificity characterization in early phase clinical studies for MDBs with limited clinical immunogenicity experience may be considered to help understand its value in later clinical development. It is beneficial and is recommended to have a well-defined plan for the characterization of ADA domain specificity and data analysis prior to the initiation of sample testing. Overall, best practices for immunogenicity evaluation of complex MDBs are discussed.


Assuntos
Anticorpos Neutralizantes/imunologia , Produtos Biológicos/imunologia , Terapia Biológica/efeitos adversos , Mapeamento de Epitopos/normas , Epitopos , Animais , Especificidade de Anticorpos , Produtos Biológicos/efeitos adversos , Guias como Assunto , Humanos , Medição de Risco , Fatores de Risco
4.
Clin Immunol ; 149(3): 534-55, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24263283

RESUMO

Protein therapeutics hold a prominent and rapidly expanding place among medicinal products. Purified blood products, recombinant cytokines, growth factors, enzyme replacement factors, monoclonal antibodies, fusion proteins, and chimeric fusion proteins are all examples of therapeutic proteins that have been developed in the past few decades and approved for use in the treatment of human disease. Despite early belief that the fully human nature of these proteins would represent a significant advantage, adverse effects associated with immune responses to some biologic therapies have become a topic of some concern. As a result, drug developers are devising strategies to assess immune responses to protein therapeutics during both the preclinical and the clinical phases of development. While there are many factors that contribute to protein immunogenicity, T cell- (thymus-) dependent (Td) responses appear to play a critical role in the development of antibody responses to biologic therapeutics. A range of methodologies to predict and measure Td immune responses to protein drugs has been developed. This review will focus on the Td contribution to immunogenicity, summarizing current approaches for the prediction and measurement of T cell-dependent immune responses to protein biologics, discussing the advantages and limitations of these technologies, and suggesting a practical approach for assessing and mitigating Td immunogenicity.


Assuntos
Produtos Biológicos/imunologia , Imunidade Celular/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Formação de Anticorpos , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Bioensaio , Produtos Biológicos/administração & dosagem , Biomarcadores Farmacológicos/análise , Citocinas/administração & dosagem , Citocinas/imunologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Simulação de Acoplamento Molecular , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA