Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 806(Pt 4): 150967, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34656603

RESUMO

Improvement of nutrient use efficiency and limiting trace elements such as arsenic and uranium bioavailability is critical for sustainable agriculture and food safety. Arsenic and uranium possess different properties and mobility in soils, which complicates the effort to reduce their uptake by plants. Here, we postulate that unsaturated soil amended with ferrihydrite nanominerals leads to improved nutrient retention and helps reduce uptake of these geogenic contaminants. Unsaturated soil is primarily oxic and can provide a stable environment for ferrihydrite nanominerals. To demonstrate the utility of ferrihydrite soil amendment, maize was grown in an unsaturated agricultural soil that is known to contain geogenic arsenic and uranium. The soil was maintained at a gravimetric moisture content of 15.1 ± 2.5%, typical of periodically irrigated soils of the US Corn Belt. Synthetic 2-line ferrihydrite was used in low doses as a soil amendment at three levels (0.00% w/w (control), 0.05% w/w and 0.10% w/w). Further, the irrigation water was fortified (~50 µg L-1 each) with elevated arsenic and uranium levels. Plant dry biomass at maturity was ~13.5% higher than that grown in soil not receiving ferrihydrite, indicating positive impact of ferrihydrite on plant growth. Arsenic and uranium concentrations in maize crops (root, shoot and grain combined) were ~ 20% lower in amended soils than that in control soils. Our findings suggest that the addition of low doses of iron nanomineral soil amendment can positively influence rhizosphere geochemical processes, enhancing nutrient plant availability and reduce trace contaminants plant uptake in sprinkler irrigated agroecosystem, which is 55% of total irrigated area in the United States.


Assuntos
Arsênio , Poluentes do Solo , Urânio , Arsênio/análise , Compostos Férricos , Nutrientes , Rizosfera , Solo , Poluentes do Solo/análise
2.
Environ Sci Technol ; 54(21): 13839-13848, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33081469

RESUMO

Redox driven mobilization and plant uptake of contaminants under transiently saturated soil conditions need to be clarified to ensure food and water quality across different irrigation systems. We postulate that solid-phase iron reduction in anoxic microsites present in the rhizosphere of unsaturated soil is a key driver for mobilization and bioavailability of contaminants under nonflooded irrigation. To clarify this, two major crops, corn and soybean differing in iron uptake strategies, were grown in irrigated synthetic soil under semiarid conditions with gravimetric moisture content ∼12.5 ± 2.4%. 2-line ferrihydrite, which was coprecipitated with uranium and arsenic, served as the only iron source in soil. Irrespective of crop type, reduced iron was detected in pore water and postexperiment rhizosphere soil confirming ferrihydrite reduction. These results support the presence of localized anoxic microsites in the otherwise aerobic porous bulk soil causing reduction of ferrihydrite and concomitant increase in plant uptake of comobilized contaminants. Our findings indicate that reactive iron minerals undergo reductive dissolution inside anoxic microsites of primarily unsaturated soil, which may have implications on the mobility of trace element contaminants such as arsenic and uranium in irrigated unsaturated soils, accounting for 55% of the irrigated area in the US.


Assuntos
Arsênio , Poluentes do Solo , Urânio , Arsênio/análise , Disponibilidade Biológica , Compostos Férricos , Solo , Poluentes do Solo/análise
3.
Plant Physiol ; 182(2): 933-948, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31818903

RESUMO

MADS box transcription factors (TFs) are subdivided into type I and II based on phylogenetic analysis. The type II TFs regulate floral organ identity and flowering time, but type I TFs are relatively less characterized. Here, we report the functional characterization of two type I MADS box TFs in rice (Oryza sativa), MADS78 and MADS79 Transcript abundance of both these genes in developing seed peaked at 48 h after fertilization and was suppressed by 96 h after fertilization, corresponding to syncytial and cellularized stages of endosperm development, respectively. Seeds overexpressing MADS78 and MADS 79 exhibited delayed endosperm cellularization, while CRISPR-Cas9-mediated single knockout mutants showed precocious endosperm cellularization. MADS78 and MADS 79 were indispensable for seed development, as a double knockout mutant failed to make viable seeds. Both MADS78 and 79 interacted with MADS89, another type I MADS box, which enhances nuclear localization. The expression analysis of Fie1, a rice FERTILIZATION-INDEPENDENT SEED-POLYCOMB REPRESSOR COMPLEX2 component, in MADS78 and 79 mutants and vice versa established an antithetical relation, suggesting that Fie1 could be involved in negative regulation of MADS78 and MADS 79 Misregulation of MADS78 and MADS 79 perturbed auxin homeostasis and carbon metabolism, as evident by misregulation of genes involved in auxin transport and signaling as well as starch biosynthesis genes causing structural abnormalities in starch granules at maturity. Collectively, we show that MADS78 and MADS 79 are essential regulators of early seed developmental transition and impact both seed size and quality in rice.


Assuntos
Endosperma/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Domínio MADS/metabolismo , Oryza/crescimento & desenvolvimento , Pólen/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Carbono/metabolismo , Núcleo Celular/metabolismo , Endosperma/genética , Endosperma/metabolismo , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Ácidos Indolacéticos/metabolismo , Proteínas de Domínio MADS/genética , Microscopia Eletrônica de Varredura , Oryza/genética , Oryza/metabolismo , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Pólen/genética , Pólen/metabolismo , Proteínas do Grupo Polycomb/metabolismo , RNA-Seq , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Sementes/genética , Sementes/metabolismo , Sementes/ultraestrutura , Fatores de Transcrição/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA