Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Headache Pain ; 24(1): 76, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37370051

RESUMO

BACKGROUND: Migraine is a disabling and chronic neurovascular headache disorder. Trigeminal vascular activation and release of calcitonin gene-related peptide (CGRP) play a pivotal role in the pathogenesis of migraine. This knowledge has led to the development of CGRP(-receptor) therapies. Yet, a substantial proportion of patients do not respond to these treatments. Therefore, alternative targets for future therapies are warranted. The current narrative review provides a comprehensive overview of the pathophysiological role of these possible non-CGRP targets in migraine. FINDINGS: We covered targets of the metabotropic receptors (pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal peptide (VIP), amylin, and adrenomedullin), intracellular targets (nitric oxide (NO), phosphodiesterase-3 (PDE3) and -5 (PDE5)), and ion channels (potassium, calcium, transient receptor potential (TRP), and acid-sensing ion channels (ASIC)). The majority of non-CGRP targets were able to induce migraine-like attacks, except for (i) calcium channels, as it is not yet possible to directly target channels to elucidate their precise involvement in migraine; (ii) TRP channels, activation of which can induce non-migraine headache; and (iii) ASICs, as their potential in inducing migraine attacks has not been investigated thus far. Drugs that target its receptors exist for PACAP, NO, and the potassium, TRP, and ASIC channels. No selective drugs exist for the other targets, however, some existing (migraine) treatments appear to indirectly antagonize responses to amylin, adrenomedullin, and calcium channels. Drugs against PACAP, NO, potassium channels, TRP channels, and only a PAC1 antibody have been tested for migraine treatment, albeit with ambiguous results. CONCLUSION: While current research on these non-CGRP drug targets has not yet led to the development of efficacious therapies, human provocation studies using these targets have provided valuable insight into underlying mechanisms of migraine headaches and auras. Further studies are needed on these alternative therapies in non-responders of CGRP(-receptor) targeted therapies with the ultimate aim to pave the way towards a headache-free future for all migraine patients.


Assuntos
Transtornos da Cefaleia , Transtornos de Enxaqueca , Humanos , Adrenomedulina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Transtornos de Enxaqueca/tratamento farmacológico , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina
2.
Int J Mol Sci ; 22(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073933

RESUMO

Migraine and sleep disorders are common chronic diseases in the general population, with significant negative social and economic impacts. The association between both of these phenomena has been observed by clinicians for years and is confirmed by many epidemiological studies. Despite this, the nature of this relationship is still not fully understood. In recent years, there has been rapid progress in understanding the common anatomical structures of and pathogenetic mechanism between sleep and migraine. Based on a literature review, the authors present the current view on this topic as well as ongoing research in this field, with reference to the key points of the biochemical and neurophysiological processes responsible for both these disorders. In the future, a better understanding of these mechanisms will significantly expand the range of treatment options.


Assuntos
Transtornos de Enxaqueca/complicações , Transtornos de Enxaqueca/metabolismo , Transtornos do Sono-Vigília/complicações , Transtornos do Sono-Vigília/metabolismo , Tronco Encefálico/fisiopatologia , Córtex Cerebral/fisiopatologia , Dopamina/metabolismo , Humanos , Hipotálamo/fisiopatologia , Melatonina/metabolismo , Transtornos de Enxaqueca/patologia , Transtornos de Enxaqueca/fisiopatologia , Orexinas/metabolismo , Serotonina/metabolismo , Sono/fisiologia , Transtornos do Sono-Vigília/patologia , Transtornos do Sono-Vigília/fisiopatologia , Tálamo/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA