Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 62(6): 709-718, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31945301

RESUMO

Chronic hypoxia (CH) augments depolarization-induced pulmonary vasoconstriction through superoxide-dependent, Rho kinase-mediated Ca2+ sensitization. Nicotinamide adenine dinucleotide phosphate oxidase and EGFR (epidermal growth factor receptor) signaling contributes to this response. Caveolin-1 regulates the activity of a variety of proteins, including EGFR and nicotinamide adenine dinucleotide phosphate oxidase, and membrane cholesterol is an important regulator of caveolin-1 protein interactions. We hypothesized that derangement of these membrane lipid domain components augments depolarization-induced Ca2+ sensitization and resultant vasoconstriction after CH. Although exposure of rats to CH (4 wk, ∼380 mm Hg) did not alter caveolin-1 expression in intrapulmonary arteries or the incidence of caveolae in arterial smooth muscle, CH markedly reduced smooth muscle membrane cholesterol content as assessed by filipin fluorescence. Effects of CH on vasoreactivity and superoxide generation were examined using pressurized, Ca2+-permeabilized, endothelium-disrupted pulmonary arteries (∼150 µm inner diameter) from CH and control rats. Depolarizing concentrations of KCl evoked greater constriction in arteries from CH rats than in those obtained from control rats, and increased superoxide production as assessed by dihydroethidium fluorescence only in arteries from CH rats. Both cholesterol supplementation and the caveolin-1 scaffolding domain peptide antennapedia-Cav prevented these effects of CH, with each treatment restoring membrane cholesterol in CH arteries to control levels. Enhanced EGF-dependent vasoconstriction after CH similarly required reduced membrane cholesterol. However, these responses to CH were not associated with changes in EGFR expression or activity, suggesting that cholesterol regulates this signaling pathway downstream of EGFR. We conclude that alterations in membrane lipid domain signaling resulting from reduced cholesterol content facilitate enhanced depolarization- and EGF-induced pulmonary vasoconstriction after CH.


Assuntos
Cálcio/fisiologia , Caveolina 1/biossíntese , Colesterol/fisiologia , Hipóxia/fisiopatologia , Lipídeos de Membrana/fisiologia , Músculo Liso Vascular/metabolismo , Artéria Pulmonar/fisiopatologia , Vasoconstrição/fisiologia , Animais , Caveolina 1/genética , Doença Crônica , Receptores ErbB/fisiologia , Hipóxia/metabolismo , Masculino , Potenciais da Membrana , Artéria Pulmonar/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Superóxidos/metabolismo
2.
Am J Physiol Heart Circ Physiol ; 314(2): H359-H369, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29101179

RESUMO

Endothelial dysfunction in chronic hypoxia (CH)-induced pulmonary hypertension is characterized by reduced store-operated Ca2+ entry (SOCE) and diminished Ca2+-dependent production of endothelium-derived vasodilators. We recently reported that SOCE in pulmonary arterial endothelial cells (PAECs) is tightly regulated by membrane cholesterol and that decreased membrane cholesterol is responsible for impaired SOCE after CH. However, the ion channels involved in cholesterol-sensitive SOCE are unknown. We hypothesized that cholesterol facilitates SOCE in PAECs through the interaction of Orai1 and stromal interaction molecule 1 (STIM1). The role of cholesterol in Orai1-mediated SOCE was initially assessed using CH exposure in rats (4 wk, 380 mmHg) as a physiological stimulus to decrease PAEC cholesterol. The effects of Orai1 inhibition with AnCoA4 on SOCE were examined in isolated PAEC sheets from control and CH rats after cholesterol supplementation, substitution of endogenous cholesterol with epicholesterol (Epichol), or vehicle treatment. Whereas cholesterol restored endothelial SOCE in CH rats, both Epichol and AnCoA4 attenuated SOCE only in normoxic controls. The Orai1 inhibitor had no further effect in cells pretreated with Epichol. Using cultured pulmonary endothelial cells to allow better mechanistic analysis of the molecular components of cholesterol-regulated SOCE, we found that Epichol, AnCoA4, and Orai1 siRNA each inhibited SOCE compared with their respective controls. Epichol had no additional effect after knockdown of Orai1. Furthermore, Epichol substitution significantly reduced STIM1-Orai1 interactions as assessed by a proximity ligation assay. We conclude that membrane cholesterol is required for the STIM1-Orai1 interaction necessary to elicit endothelial SOCE. Furthermore, reduced PAEC membrane cholesterol after CH limits Orai1-mediated SOCE. NEW & NOTEWORTHY This research demonstrates a novel contribution of cholesterol to regulate the interaction of Orai1 and stromal interaction molecule 1 required for pulmonary endothelial store-operated Ca2+ entry. The results provide a mechanistic basis for impaired pulmonary endothelial Ca2+ influx after chronic hypoxia that may contribute to pulmonary hypertension.


Assuntos
Sinalização do Cálcio , Membrana Celular/metabolismo , Colesterol/metabolismo , Células Endoteliais/metabolismo , Hipóxia/metabolismo , Proteína ORAI1/metabolismo , Artéria Pulmonar/metabolismo , Animais , Pressão Arterial , Benzodioxóis/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Células Cultivadas , Cromonas/farmacologia , Doença Crônica , Modelos Animais de Doenças , Regulação para Baixo , Células Endoteliais/efeitos dos fármacos , Hipóxia/fisiopatologia , Masculino , Proteína ORAI1/antagonistas & inibidores , Proteína ORAI1/genética , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/fisiopatologia , Ratos Sprague-Dawley , Molécula 1 de Interação Estromal/metabolismo
3.
Am J Physiol Heart Circ Physiol ; 312(6): H1176-H1184, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28364016

RESUMO

Chronic hypoxia (CH)-induced pulmonary hypertension is associated with diminished production of endothelium-derived Ca2+-dependent vasodilators such as nitric oxide. Interestingly, ATP-induced endothelial Ca2+ entry as well as membrane cholesterol (Chol) are decreased in pulmonary arteries from CH rats (4 wk, barometric pressure = 380 Torr) compared with normoxic controls. Store-operated Ca2+ entry (SOCE) and depolarization-induced Ca2+ entry are major components of the response to ATP and are similarly decreased after CH. We hypothesized that membrane Chol facilitates both SOCE and depolarization-induced pulmonary endothelial Ca2+ entry and that CH attenuates these responses by decreasing membrane Chol. To test these hypotheses, we administered Chol or epicholesterol (Epichol) to acutely isolated pulmonary arterial endothelial cells (PAECs) from control and CH rats to either supplement or replace native Chol, respectively. The efficacy of membrane Chol manipulation was confirmed by filipin staining. Epichol greatly reduced ATP-induced Ca2+ influx in PAECs from control rats. Whereas Epichol similarly blunted endothelial SOCE in PAECs from both groups, Chol supplementation restored diminished SOCE in PAECs from CH rats while having no effect in controls. Similar effects of Chol manipulation on PAEC Ca2+ influx were observed in response to a depolarizing stimulus of KCl. Furthermore, KCl-induced Ca2+ entry was inhibited by the T-type Ca2+ channel antagonist mibefradil but not the L-type Ca2+ channel inhibitor diltiazem. We conclude that PAEC membrane Chol is required for ATP-induced Ca2+ entry and its two components, SOCE and depolarization-induced Ca2+ entry, and that reduced Ca2+ entry after CH may be due to loss of this key regulator.NEW & NOTEWORTHY This research is the first to examine the direct role of membrane cholesterol in regulating pulmonary endothelial agonist-induced Ca2+ entry and its components. The results provide a potential mechanism by which chronic hypoxia impairs pulmonary endothelial Ca2+ influx, which may contribute to pulmonary hypertension.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Células Endoteliais/metabolismo , Hipóxia/metabolismo , Artéria Pulmonar/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Cavéolas/metabolismo , Membrana Celular/efeitos dos fármacos , Células Cultivadas , Colesterol/farmacologia , Doença Crônica , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Masculino , Potenciais da Membrana , Artéria Pulmonar/efeitos dos fármacos , Ratos Sprague-Dawley , Fatores de Tempo
4.
Am J Physiol Cell Physiol ; 301(6): C1404-14, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21900688

RESUMO

A novel vasodilatory influence of endothelial cell (EC) large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels is present following in vivo exposure to chronic hypoxia (CH) and may exist in other pathological states. However, the mechanism of channel activation that results in altered vasoreactivity is unknown. We tested the hypothesis that CH removes an inhibitory effect of the scaffolding domain of caveolin-1 (Cav-1) on EC BK(Ca) channels to permit activation, thereby affecting vasoreactivity. Experiments were performed on gracilis resistance arteries and ECs from control and CH-exposed (380 mmHg barometric pressure for 48 h) rats. EC membrane potential was hyperpolarized in arteries from CH-exposed rats and arteries treated with the cholesterol-depleting agent methyl-ß-cyclodextrin (MBCD) compared with controls. Hyperpolarization was reversed by the BK(Ca) channel antagonist iberiotoxin (IBTX) or by a scaffolding domain peptide of Cav-1 (AP-CAV). Patch-clamp experiments documented an IBTX-sensitive current in ECs from CH-exposed rats and in MBCD-treated cells that was not present in controls. This current was enhanced by the BK(Ca) channel activator NS-1619 and blocked by AP-CAV or cholesterol supplementation. EC BK(Ca) channels displayed similar unitary conductance but greater Ca(2+) sensitivity than BK(Ca) channels from vascular smooth muscle. Immunofluorescence imaging demonstrated greater association of BK(Ca) α-subunits with Cav-1 in control arteries than in arteries from CH-exposed rats, although fluorescence intensity for each protein did not differ between groups. Finally, AP-CAV restored myogenic and phenylephrine-induced constriction in arteries from CH-exposed rats without affecting controls. AP-CAV similarly restored diminished reactivity to phenylephrine in control arteries pretreated with MBCD. We conclude that CH unmasks EC BK(Ca) channel activity by removing an inhibitory action of the Cav-1 scaffolding domain that may depend on cellular cholesterol levels.


Assuntos
Caveolina 1/metabolismo , Células Endoteliais/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Vasoconstrição/fisiologia , Animais , Artérias/fisiologia , Hipóxia Celular/fisiologia , Imunofluorescência , Canais de Potássio Ativados por Cálcio de Condutância Alta/química , Masculino , Potenciais da Membrana/fisiologia , Músculo Liso Vascular/metabolismo , Técnicas de Patch-Clamp , Estrutura Terciária de Proteína , Ratos , Ratos Sprague-Dawley
5.
Environ Health Perspect ; 119(1): 98-103, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20870565

RESUMO

BACKGROUND AND OBJECTIVE: Increased air pollutants correlate with increased incidence of cardiovascular disease potentially due to vascular dysfunction. We have reported that acute diesel engine exhaust (DE) exposure enhances vasoconstriction and diminishes acetylcholine (ACh)-induced dilation in coronary arteries in a nitric oxide synthase (NOS)-dependent manner. We hypothesize that acute DE inhalation leads to endothelial dysfunction by uncoupling NOS. METHODS: Rats inhaled fresh DE (300 µg particulate matter/m3) or filtered air for 5 hr. After off-gassing, intraseptal coronary arteries were isolated and dilation to ACh recorded using videomicroscopy. RESULTS: Arteries from DE-exposed animals dilated less to ACh than arteries from air-exposed animals. NOS inhibition did not affect ACh dilation in control arteries but increased dilation in the DE group, suggesting NOS does not normally contribute to ACh-induced dilation in coronary arteries but does contribute to endothelial dysfunction after DE inhalation. Cyclooxygenase (COX) inhibition did not affect ACh dilation in the DE group, but combined inhibition of NOS and COX diminished dilation in both groups and eliminated intergroup differences, suggesting that the two pathways interact. Superoxide scavenging increased ACh dilation in DE arteries, eliminating differences between groups. Tetrahydrobiopterin (BH4) supplementation with sepiapterin restored ACh-mediated dilation in the DE group in a NOS-dependent manner. Superoxide generation (dihydroethidium staining) was greater in DE arteries, and superoxide scavenging, BH4 supplementation, or NOS inhibition reduced the signal in DE but not air arteries. CONCLUSION: Acute DE exposure appears to uncouple NOS, increasing reactive oxygen species generation and causing endothelial dysfunction, potentially because of depletion of BH4 limiting its bioavailability.


Assuntos
Poluentes Atmosféricos/toxicidade , Vasos Coronários/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Óxido Nítrico Sintase/metabolismo , Emissões de Veículos/toxicidade , Acetilcolina/metabolismo , Animais , Arteríolas/efeitos dos fármacos , Arteríolas/enzimologia , Arteríolas/metabolismo , Vasos Coronários/enzimologia , Vasos Coronários/metabolismo , Endotélio Vascular/enzimologia , Endotélio Vascular/metabolismo , Masculino , Prostaglandina-Endoperóxido Sintases/metabolismo , Ratos , Ratos Sprague-Dawley , Vasodilatação/efeitos dos fármacos
6.
J Appl Physiol (1985) ; 104(1): 110-8, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17947499

RESUMO

Intermittent hypoxia (IH) resulting from sleep apnea can lead to pulmonary hypertension (PH) and right heart failure, similar to chronic sustained hypoxia (CH). Supplemental CO(2), however, attenuates hypoxic PH. We therefore hypothesized that, similar to CH, IH elicits PH and associated increases in arterial endothelial nitric oxide synthase (eNOS) expression, ionomycin-dependent vasodilation, and receptor-mediated pulmonary vasoconstriction. We further hypothesized that supplemental CO(2) inhibits these responses to IH. To test these hypotheses, we measured eNOS expression by Western blot in intrapulmonary arteries from CH (2 wk, 0.5 atm), hypocapnic IH (H-IH) (3 min cycles of 5% O(2)/air flush, 7 h/day, 2 wk), and eucapnic IH (E-IH) (3 min cycles of 5% O(2), 5% CO(2)/air flush, 7 h/day, 2 wk) rats and their respective controls. Furthermore, vasodilatory responses to the calcium ionophore ionomycin and vasoconstrictor responses to the thromboxane mimetic U-46619 were measured in isolated saline-perfused lungs from each group. Hematocrit, arterial wall thickness, and right ventricle-to-total ventricle weight ratios were additionally assessed as indexes of polycythemia, arterial remodeling, and PH, respectively. Consistent with our hypotheses, E-IH resulted in attenuated polycythemia, arterial remodeling, RV hypertrophy, and eNOS upregulation compared with H-IH. However, in contrast to CH, neither H-IH nor E-IH increased ionomycin-dependent vasodilation. Furthermore, H-IH and E-IH similarly augmented U-46619-induced pulmonary vasoconstriction but to a lesser degree than CH. We conclude that maintenance of eucapnia decreases IH-induced PH and upregulation of arterial eNOS. In contrast, increases in pulmonary vasoconstrictor reactivity following H-IH are unaltered by exposure to supplemental CO(2).


Assuntos
Hipertensão Pulmonar/etiologia , Hipocapnia/fisiopatologia , Hipóxia/fisiopatologia , Artéria Pulmonar/fisiopatologia , Vasoconstrição , Vasodilatação , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Animais , Dióxido de Carbono/sangue , Doença Crônica , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/etiologia , Hipertrofia Ventricular Direita/fisiopatologia , Hipocapnia/metabolismo , Hipocapnia/patologia , Hipóxia/complicações , Hipóxia/metabolismo , Hipóxia/patologia , Ionomicina/farmacologia , Ionóforos/farmacologia , Masculino , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III , Oxigênio/sangue , Policitemia/etiologia , Policitemia/fisiopatologia , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/enzimologia , Artéria Pulmonar/patologia , Ratos , Ratos Sprague-Dawley , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA