Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 129: 155552, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38552378

RESUMO

BACKGROUND: Studies have shown that phenylethanoid glycosides (PhGs) have multiple pharmacological effects such as anti-inflammatory, hepatoprotective or neuroprotective functions, whereas their anti-tumor effects are rarely studied. Tubuloside B (Tub B) is a PhG isolated from Cistanche deserticola, a traditional Chinese medicine. To date, there is a lack of comprehensive research regarding the biological activity of Tub B. PURPOSE: The subject of the current study was to investigate the anti-hepatocellular carcinoma (HCC) cell activity and the underlying mechanism of Tub B. METHODS: We evaluated the in vitro anti-migratory effect of Tub B by scratch and transwell assays. RNA-seq was employed to identify the differential genes by Tub B. Besides, the functional mechanism of Tub B was investigated by distinct molecular biology techniques including immunofluorescent staining, quantitative PCR, as well as western blot analysis. Subsequently, we utilized Hep3B cells for in vivo metastasis assays through spleen injection and evaluated the anti-migratory effect of Tub B in hepatocellular carcinoma (HCC). RESULTS: Tub B exhibited in vitro and in vivo inhibition of HCC cell migration. Tub B decreased the expression of transcriptional target genes downstream of the Hippo pathway, including CTGF, CYR61, and N-cadherin as determined by RNA-seq. Furthermore, mechanistic studies confirmed that Tub B increased phosphorylation of YAP at S127, which contributes to YAP cytoplasmic localization. Additionally, overexpression of YAP abrogated Tub B-induced inhibition of HCC migration and the mRNA levels of CTGF, CYR61, and N-cadherin. CONCLUSIONS: Taken together, these results illustrated that Tub B demonstrated great potential in inhibiting migration of HCC, and a portion of its impact can be attributed to the modulation of the Hippo-YAP pathway.


Assuntos
Carcinoma Hepatocelular , Movimento Celular , Cistanche , Via de Sinalização Hippo , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Humanos , Movimento Celular/efeitos dos fármacos , Cistanche/química , Animais , Linhagem Celular Tumoral , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Glicosídeos/farmacologia , Proteínas de Sinalização YAP , Antineoplásicos Fitogênicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Camundongos Nus , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Masculino
2.
Oxid Med Cell Longev ; 2023: 6726654, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819778

RESUMO

It is an effective strategy to treat tuberculosis by enhancing reactive oxygen species- (ROS-) mediated killing of Mycobacterium tuberculosis in macrophages, but there are no current therapeutic agents targeting this pathway. Honeysuckle has been used as the traditional medicine for tuberculosis treatment for 1500 years. Japoflavone D (JFD) is a novel biflavonoid isolated from Honeysuckle promoting ROS accumulation by Nrf2 pathway in hepatocarcinoma cells. However, its activity to kill M. tuberculosis in macrophages and molecular mechanism has not been reported. Our results showed that JFD enhances the M. tuberculosis elimination by boosting ROS levels in THP-1 cells. Moreover, the massive ROS accumulation activates p38 to induce apoptosis. Notably, the mechanism revealed that JFD suppresses the nuclear transport of Nrf2, thereby inhibiting SOD2 transcription, leading to a large ROS accumulation. Further studies showed that JFD disrupts the Keap1 alkylation at specific residues Cys14, Cys257, and Cys319, which is crucial for Nrf2 activation, thereby interrupts the nuclear transport of Nrf2. In pharmacokinetic study, JFD can stay as the prototype for 24 h in mice and can be excreted in feces without any toxicity. Our data reveal for the first time that a novel biflavonoid JFD as a potent inhibitor of Keap1 alkylation can suppress the nuclear transport of Nrf2. And it is the first research of the inhibitor of Keap1 alkylation. Furthermore, JFD robustly promotes M. tuberculosis elimination from macrophages by inhibiting Keap1/Nrf2/SOD2 pathway, resulting in the ROS accumulation. This work identified Keap1 alkylation as a new drug target for tuberculosis and provides a preliminary basis for the development of antituberculosis lead compounds based on JFD.


Assuntos
Biflavonoides , Mycobacterium tuberculosis , Animais , Camundongos , Alquilação , Biflavonoides/farmacologia , Flavonas/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
3.
Phytomedicine ; 96: 153889, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35026509

RESUMO

BACKGROUND: Lonicera Linn. belonging to the family Caprifoliaceae, the largest genus in the plant family, includes about more than 200 species, which are mainly distributed in northern Africa, North America, Europe and Asia. Some species of this genus have been usually used in traditional Chinese medicine as well as functional foods, cosmetics and other applications, such as L. japonica Thunb. Bioactive components and pharmacological activities of the genus Lonicera plants have received an increasing interest from the scientific community. Thus, a comprehensive and systematic review on their traditional usage in China, chemical components, and their pharmacological properties of their whole plants, bioactive extracts, and bioactive isolates including partial structure-activity relationships from the genus is indispensable. METHODS: Information on genus Lonicera of this systematic electronic literature search was gathered via the published articles, patents, clinical trials website (https://clinicaltrials.gov/) and several online bibliographic databases (PubMed, Sci Finder, Research Gate, Science Direct, CNKI, Web of Science and Google Scholar). The following keywords were used for the online search: Lonicera, phytochemical composition, Lonicerae japonica, Lonicera review articles, bioactivities of Lonicera, anti-inflammatory, antiviral, antimicrobial, anticancer, hepatoprotective, antioxidant, neuroprotective, anti-diabetic, and clinical trials. This review paper consists of a total of 225 papers covering the Lonicera genus from 1800 to 2021, including research articles, reviews, patents, and book chapters. RESULTS: In this review (1800s-2021), about 420 components from the genus of Lonicera Linn. including 87 flavonoids, 222 terpenoids, 51 organic acids, and other compounds, together with their pharmacological activities including anti-inflammatory, antiviral, antimicrobial, anticancer, hepatoprotective, antioxidant, neuroprotective, antidiabetic, anti-allergic, immunomodulatory effects, and toxicity were summarized. CONCLUSION: The relationship is discussed among their traditional usage, their pharmacological properties, and their chemical components, which indicate the genus Lonicera have a large prospect in terms of new drug exploitation, especially in COVID-19 treatment.


Assuntos
Tratamento Farmacológico da COVID-19 , Lonicera , Descoberta de Drogas , Etnofarmacologia , Humanos , Medicina Tradicional , Compostos Fitoquímicos/farmacologia , Fitoterapia , Extratos Vegetais/farmacologia , SARS-CoV-2
4.
Phytomedicine ; 70: 153219, 2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32361557

RESUMO

BACKGROUND: 4,5-di-O-caffeoylquinic acid methyl ester (4,5-CQME) is a caffeoylquinic acid (CQA) isolated from Lonicera japonica Thunb., a traditional Chinese medicine. To date, the biological activity of 4,5-CQME has not been fully investigated. PURPOSE: The aim of the current study was to explore the anti-oxidative activity and the underlying mechanism of 4,5-CQME. METHODS: MTT assay was used to evaluate the cytoprotective effect of 4,5-CQME. DCFH-DA was used as a fluorescence probe to detect intracellular ROS. The mitochondrial membrane potential was detected using the fluorescent probe JC-1. MDA and GSH levels were measured using MDA and GSH commercial kits, respectively. Apoptosis assay was performed using the Annexin V-FITC/PI method. The functional mechanism of 4,5-CQME was investigated by analyzing relative signaling pathways through immunofluorescent staining, quantitative PCR and western blot analysis. RESULTS: HepG2 cells were incubated with different concentrations of 4,5-CQME for 12 h before exposure to 500 µM H2O2 for 3 h. 4,5-CQME attenuated H2O2-induced oxidative damage and had a higher cytoprotective effect than 3-caffeoylquinic acid, 3-caffeoylquinic acid methyl ester, or 4,5-di-O-caffeoylquinic acid. 4,5-CQME also reduced ROS and MDA levels and rescued GSH depletion. Western blots demonstrated that 4,5-CQME decreased Bax/Bcl-2 and Bak levels. A mechanistic study confirmed that 4,5-CQME significantly suppressed H2O2-induced MAPKs phosphorylation but had little effect on MAPKs phosphorylation under normal conditions. By contrast, 4,5-CQME induced AKT phosphorylation in the presence or absence of H2O2. 4,5-CQME also regulated the Keap1/Nrf2 signaling pathway and enhanced both the mRNA and protein expressions of HO-1 and NQO1. The anti-oxidative effect of 4,5-CQME was greatly abolished by co-incubation with the Nrf2 inhibitor ML385 or PI3K inhibitor wortmannin. CONCLUSIONS: Taken together, these results showed that 4,5-CQME offered significant protection against H2O2-induced oxidative stress, and its effect was in part due to the modulation of the Keap1/Nrf2 pathway.

5.
Front Pharmacol ; 11: 530, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425782

RESUMO

Si-Wei-Qing-Gan-Tang (SWQGT) is a Chinese medicine formula that is widely used as a folk remedy of herbal tea for the treatment of chronic hepatitis, like non-alcoholic steatohepatitis (NASH), around Ganzhou City (Jiangxi province, China). However, the underlying mechanisms of this formula against NASH are still unknown. This study aimed to explore the effect and mechanisms of SWQGT against NASH. A network pharmacology approach was used to predict the potential mechanisms of SWQGT against NASH. Then a rat model of NASH established by feeding the methionine and choline deficient (MCD) diet was used to verify the effect and mechanisms of SWQGT on NASH in vivo. SWQGT (1 g/kg/d and 3 g/kg/d) were given by intragastric administration. Body weight, liver weight, serum biochemical indicators, liver triglyceride and total cholesterol were all measured. Tumor necrosis factor-α (TNF-α), Interleukin (IL)-1ß, IL-6 levels in the livers were evaluated using ELISA. Hematoxylin and eosin (HE) and Oil Red O staining were used to determine histology, while western blot was used to assess the relative expression levels of the nuclear factor-κB (NF-κB) pathway- and autophagy-related proteins. Functional and pathway enrichment analyses revealed that SWQGT obviously influenced inflammation-related signal pathways in NASH. Furthermore, in vivo experiment showed that SWQGT caused a reduction in liver weight and liver index of MCD diet-fed rats. The formula also helped to reduce hepatomegaly and improve pathological liver changes and hepatic steatosis. SWQGT likewise reduced liver TNF-α, IL-1ß, and IL-6 levels and down-regulated p-NF-κB p65, p-p38 MAPK, p-MEK1/2, p-ERK1/2, p-mTOR, and p62, while up-regulating p-ULK1 and LC3II protein expression levels. SWQGT could improve NASH in MCD diet-fed rats, and this effect may be associated with its down-regulation of NF-κB and activation of autophagy.

6.
Food Chem Toxicol ; 138: 111250, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32156566

RESUMO

Caffeoylquinic acids are well known for their prominent antiviral activities. Beyond our expectations, we initially found 3,4,5-Tri-O-caffeoylquinic acid methyl ester (3,4,5-CQME) from L. japonica can facilitate HBV DNA and antigens secretion. This study aimed to investigate its underlying molecular mechanism. The results indicate that 3,4,5-CQME signally increased intracellular and secreted HBsAg levels by more than two times in HepG2.2.15 cells and HepAD38 cells. Furthermore, levels of HBeAg, HBV DNA and RNA were significantly enhanced by 3-day 3,4,5-CQME treatment; it didn't directly affect intracellular cccDNA amount, although it slightly increased cccDNA accumulation as a HBV DNA replication feedback. In addition, treatment with 3,4,5-CQME significantly induced HBx protein expression for viral replication. We utilized a phospho-antibody assay to profile the signal transduction change by 3,4,5-CQME to illuminate its molecular mechanism. The results indicate that treatment with 3,4,5-CQME activated AKT/mTOR, MAPK and NF-κB pathways verified by immunoblot. Moreover, 3,4,5-CQME upregulated the expression of nuclear transcriptional factors PGC1α and PPARα. In short, 3,4,5-CQME promotes HBV transcription and replication by upregulating HBx expression and activating HBV transcriptional regulation-related signals. As caffeoylquinic acids are widely present in traditional Chinese medicines, the risk of intaking caffeoylquinic acids-containing herbs for hepatitis B treatment requires more evaluation and further research.


Assuntos
Vírus da Hepatite B/efeitos dos fármacos , Lonicera/química , Ácido Quínico/análogos & derivados , Ácidos Tricarboxílicos/farmacologia , Replicação Viral/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , DNA Viral/metabolismo , Flores/química , Células Hep G2 , Hepatite B/virologia , Antígenos da Hepatite B/metabolismo , Antígenos E da Hepatite B/metabolismo , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Monossacarídeos/química , Monossacarídeos/isolamento & purificação , Monossacarídeos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Proteínas Serina-Treonina Quinases , Ácido Quínico/química , Ácido Quínico/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ácidos Tricarboxílicos/isolamento & purificação , Regulação para Cima/efeitos dos fármacos
7.
Bioorg Chem ; 92: 103198, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31446242

RESUMO

Three new naturally occurring monoterpenoids, japopenoid A (1), japopenoid B (23) japopenoid C (24), and one new caffeoylquinic acid derivative (28), together with thirty-one known compounds (2-22, 25-27, 29-35), were isolated and identified from the flower buds of Lonicera japonica Thunb. Their structures were determined by extensive 1D and 2D NMR spectroscopic methods, high-resolution mass spectrometry, and the absolute configurations of 1, 23, 24 were determined by comparison of their electronic circular dichroism (ECD) spectrum with literature and theoretical calculation. Structurally, compound 1 is a monoterpenoid featured with an unusual tricyclic skeleton. All compounds (1-35) were evaluated for their cytotoxicities against human liver cancer cell lines (HepG 2 and SMMC-7721). Compound 12 exhibited the most potent activity with IC50 values of 26.54 ±â€¯1.95 and 8.72 ±â€¯1.57 µg/ml against HepG 2 and SMMC-7721, and the IC50 values of compound 13 were 26.54 ±â€¯1.95 and 12.35 ±â€¯1.43 µg/ml, respectively. Western blot results further proved that compound 13 induces hepatoma cell apoptosis via the intrinsic apoptosis pathway. In addition, most terpenoids showed inhibitory activity against HBsAg and HBeAg secretion, and HBV DNA replication. In particular, 25 µg/mlof compound 11 inhibits HBsAg and HBeAg secretion, and HBV DNA replication by 39.39 ±â€¯5.25, 15.64 ±â€¯1.25, and 16.13 ±â€¯4.10% compared to the control (p < 0.05). These results indicated that L. japonica flower buds could be served as functional food for anti-hepatoma and anti-HBV activities.


Assuntos
Antineoplásicos/química , Antivirais/química , Carcinoma Hepatocelular/tratamento farmacológico , Flores/química , Vírus da Hepatite B/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Lonicera/química , Extratos Vegetais/química , Antineoplásicos/farmacologia , Antivirais/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Antígenos de Superfície da Hepatite B/metabolismo , Antígenos E da Hepatite B/metabolismo , Humanos , Estrutura Molecular , Monoterpenos/química , Extratos Vegetais/farmacologia , Transdução de Sinais
8.
Phytomedicine ; 57: 282-291, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30802714

RESUMO

BACKGROUND: In our previous work, we purified a novel biflavonoid named Japoflavone D (JFD) from Lonicera japonica flower buds. Biflavonoids are chemical compounds characterized by their high levels of antioxidative activity. PURPOSE: The present study aimed to investigate the function and molecular mechanism of JFD under different oxidative conditions in hepatoma cells. METHODS: MTT assay and apoptosis assay were used to evaluate the cytotoxic effect of JFD. The activities of SOD and CAT were detected to evaluate the oxidative level. Oxidative stress was induced by H2O2 stimulation. The molecular mechanism of JFD was investigated by analyzing relative signaling pathway. RESULTS: JFD inhibited cell viability in all hepatoma cell lines we examined. Under quiescent conditions, JFD treatment of SMMC-7721 cells resulted in upregulation of AKT/mTOR signal pathway and ERK activities and downregulation of KEAP1/NRF2/ARE signaling axis, together with apoptosis. However, under oxidative stress, JFD played a quite different role. Treatment of JFD suppressed the activation of ERK and mTOR and activated the KEAP1/NRF2/ARE signaling axis, which is a predominant regulator of cytoprotective responses to oxidative stress, thereby lessening the damage caused by excess reactive oxygen species (ROS). A molecular docking analysis suggested that JFD may interrupt the interaction between KEAP1 and NRF2 by competitively anchoring to the NRF2 binding site on KEAP1. CONCLUSION: The results indicate that JFD functions as a potent antioxidant and plays dual roles in modulating apoptosis under different oxidative conditions. JFD has the potential to be developed as a protective drug for diseases related with excess ROS.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Biflavonoides/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Lonicera/química , Antineoplásicos Fitogênicos/química , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Biflavonoides/química , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Flores/química , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/química , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Simulação de Acoplamento Molecular , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
9.
Fitoterapia ; 131: 236-244, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30414877

RESUMO

Six previously undescribed naturally occurring meroterpenoids (2, 5-9) together with seven known meroterpenoids (1, 3, 4, 10-13) were isolated from the root plant of Arnebia euchroma. Their structures and absolute configurations were determined by extensive 1D (1H NMR, 13C NMR) and 2D NMR (1H1H COSY, DEPT, HMQC, HMBC, NOESY) spectroscopic methods, spectroscopy high resolution mass spectrometry, as well as DFT and MM2 force-field calculations. Meroterpenoids 1-13 were evaluated for their cytotoxicities against human liver cancer cell lines SMMC-7721, HepG2, QGY-7703 and HepG2/ADM. Meroterpenoid 5 exhibited the most potent activity with IC50 values of 6.40 ±â€¯0.51, 3.86 ±â€¯0.28, 3.43 ±â€¯0.27 and 11.31 ±â€¯0.67 µM, respectively. Meroterpenoid 4 exhibited significant growth inhibitory effects against HepG2/ADM with IC50 at 18.77 ±â€¯1.23 µM, and meroterpenoid 8 with IC50 at 5.41 ±â€¯0.51 and 6.18 ±â€¯0.47 µM against HepG2 and QGY-7703, respectively. These were more potent than the positive drug, Cisplatin.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Boraginaceae/química , Terpenos/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , China , Células Hep G2 , Humanos , Estrutura Molecular , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Raízes de Plantas/química , Terpenos/isolamento & purificação
10.
Sci Rep ; 8(1): 13152, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30177727

RESUMO

Liver cancer, also known as primary liver cancer, is cancer that starts in the liver. JNU-144, a new meroterpenoid purified from Lithospermum erythrorhizon, has exhibited promising anticancer activity; however, the molecular mechanisms of action of JNU-144 on malignant cells remain unclear. Our studies revealed that JNU-144 suppressed cell viability and proliferation in hepatoma cells by downregulating mTOR activation. Meanwhile, JNU-144 activated the intrinsic apoptosis pathway and subsequently triggered apoptotic cell death in SMMC-7721 cells. We also found that JNU-144 inhibited the epithelial-mesenchymal transition in both SMMC-7721 and HepG2 cells through reprogramming of epithelial-mesenchymal transition (EMT)-related gene expression or regulating protein instability. These findings indicate that JNU-144 exerts potent anticancer activity in hepatoma cells and may be developed as a potential therapeutic drug.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/tratamento farmacológico , Serina-Treonina Quinases TOR/genética , Terpenos/farmacologia , Antígenos CD/genética , Antígenos CD/metabolismo , Antineoplásicos Fitogênicos/isolamento & purificação , Caderinas/genética , Caderinas/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Humanos , Lithospermum/química , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Extratos Vegetais/química , Transdução de Sinais , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Terpenos/isolamento & purificação , Carga Tumoral/efeitos dos fármacos , Vimentina/genética , Vimentina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA