Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Aging Neurosci ; 15: 1156265, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469953

RESUMO

Introduction: Lycium barbarum glycopeptide (LbGp) is the main bioactive compound extracted from the traditional Chinese medicine. L. barbarum berries and has been proven to have numerous health benefits, including antioxidative, anti-inflammatory, anticancer, and cytoprotective activities. However, the antiaging effect of LbGp remains unknown. Methods: The lifespan and body movement of C. elegans were used to evaluate the effect of LbGp on lifespan and health span. The thrashing assay was used to determine the role of LbGp in Parkinson's disease. To investigate the mechanisms of LbGp-induced antiaging effects, we analyzed changes in lifespan, movement, and the expression of longevity-related genes in a series of worm mutants after LbGp treatment. Results: We found that LbGp treatment prolonged the lifespan and health span of C. elegans. Mechanistically, we found that LbGp could activate the transcription factors DAF-16/FOXO, SKN-1/Nrf2, and HSF-1, as well as the nuclear receptor DAF-12, thereby upregulating longevity-related genes to achieve lifespan extension. In addition, we found that the lifespan extension induced by LbGp partially depends on mitochondrial function. Intriguingly, LbGp also ameliorated neurodegenerative diseases such as Parkinson's disease in a DAF-16-, SKN-1-, and HSF-1-dependent manner. Conclusion: Our work suggests that LbGp might be a viable candidate for the treatment and prevention of aging and age-related diseases.

2.
Cell Calcium ; 93: 102327, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33316585

RESUMO

Inositol polyphosphate multikinase (IPMK) is a conserved protein that initiates the production of inositol phosphate intracellular messengers and is critical for regulating a variety of cellular processes. Here, we report that the C. elegans IPMK-1, which is homologous to the mammalian inositol polyphosphate multikinase, plays a crucial role in regulating rhythmic behavior and development. The deletion mutant ipmk-1(tm2687) displays a long defecation cycle period and retarded postembryonic growth. The expression of functional ipmk-1::GFP was detected in the pharyngeal muscles, amphid sheath cells, the intestine, excretory (canal) cells, proximal gonad, and spermatheca. The expression of IPMK-1 in the intestine was sufficient for the wild-type phenotype. The IP3-kinase activity of IPMK-1 is required for defecation rhythms and postembryonic development. The defective phenotypes of ipmk-1(tm2687) could be rescued by a loss-of-function mutation in type I inositol 5-phosphatase homolog (IPP-5) and improved by a supplemental Ca2+ in the medium. Our work demonstrates that IPMK-1 and the signaling molecule inositol triphosphate (IP3) pathway modulate rhythmic behaviors and development by dynamically regulating the concentration of intracellular Ca2+ in C. elegans. Advances in understanding the molecular regulation of Ca2+ homeostasis and regulation of organism development may lead to therapeutic strategies that modulate Ca2+ signaling to enhance function and counteract disease processes. Unraveling the physiological role of IPMK and the underlying functional mechanism in C. elegans would contribute to understanding the role of IPMK in other species, especially in mammals, and benefit further research on the involvement of IPMK in disease.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/enzimologia , Sinalização do Cálcio , Desenvolvimento Embrionário , Inositol 1,4,5-Trifosfato/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotransferases/metabolismo , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Defecação , Deleção de Genes , Espaço Intracelular/metabolismo , Mutação/genética , Especificidade de Órgãos , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/química
3.
Nat Prod Bioprospect ; 7(2): 207-214, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28194725

RESUMO

Alzheimer's disease (AD) is a major public health concern worldwide and the few drugs currently available only treat the symptoms. Hence, there is a strong need to find more effective anti-AD agents. Cynanchum otophyllum is a traditional Chinese medicine for treating epilepsy, and otophylloside B (Ot B), isolated from C. otophyllum, is the essential active component. Having previously identified anti-aging effects of Ot B, we evaluated Ot B for AD prevention in C. elegans models of AD and found that Ot B extended lifespan, increased heat stress-resistance, delayed body paralysis, and increased the chemotaxis response. Collectively, these results indicated that Ot B protects against Aß toxicity. Further mechanistic studies revealed that Ot B decreased Aß deposition by decreasing the expression of Aß at the mRNA level. Genetic analyses showed that Ot B mediated its effects by increasing the activity of heat shock transcription factor (HSF) by upregulating the expression of hsf-1 and its target genes, hsp-12.6, hsp-16.2 and hsp-70. Ot B also increased the expression of sod-3 by partially activating DAF-16, while SKN-1 was not essential in Ot B-mediated protection against Aß toxicity.

4.
Nat Prod Bioprospect ; 5(4): 177-183, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26112394

RESUMO

Aging is the major risk factor for many human diseases and degeneration. Thus, clinically effective medicine could delay the process of aging and aging-related diseases are desperately wanted. In traditional Chinese medicine (TCM), some were claimed to slow down aging. Qingyangshen (Cynanchum otophyllum schneid) is such a TCM. Here, we assayed the longevity effect of compound Otophylloside B (Ot B), a C-21 steroidal glycoside isolated from Qingyangshen, in Caenorhabditis elegans, which is a popular model for aging research. Our results showed that Ot B could modestly extend the lifespan of C. elegans, delay the age-related decline of body movement and improve the stress resistance. Further investigating the molecular mechanism of lifespan extension effect revealed that Ot B could activate the FOXO transcription factor DAF-16. Ot B could not further extend the lifespan of long-lived mutant of insulin/IGF-1-like receptor (daf-2). In addition, Ot B also requires SIR-2.1 and CLK-1 which is an enzyme in ubiquinone synthesis, for lifespan extension.

5.
Exp Gerontol ; 48(5): 499-506, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23485446

RESUMO

Aspirin has been revealed to have many beneficial effects for health since it was discovered as a nonsteroidal anti-inflammatory drug (NSAID) to treat pain and inflammation. Here, we investigated the molecular mechanism of aspirin on the lifespan extension of Caenorhabditis elegans. Our results showed that aspirin could extend the lifespan of C. elegans, and increase its health span and stress resistance. The extension of lifespan by aspirin requires DAF-16/FOXO, AMPK, and LKB1, but not SIR-2.1. Aspirin could not extend the lifespan of the mutants of eat-2, clk-1, and isp-1. Aspirin could marginally extend the lifespan of long-live insulin-like receptor mutant daf-2(e1370) III. Taken together, aspirin might act through a dietary restriction-like mechanism, via increasing the AMP:ATP ratio and activating LKB1, subsequently activating AMPK, which stimulates DAF-16 to induce downstream effects through a DAF-16 translocation independent manner.


Assuntos
Aspirina/farmacologia , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Proteínas Quinases/fisiologia , Fatores de Transcrição/fisiologia , Quinases Proteína-Quinases Ativadas por AMP , Animais , Aspirina/administração & dosagem , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Complexo III da Cadeia de Transporte de Elétrons/genética , Privação de Alimentos/fisiologia , Fatores de Transcrição Forkhead , Temperatura Alta , Longevidade/genética , Longevidade/fisiologia , Movimento/efeitos dos fármacos , Mutação , Fenótipo , Receptores Nicotínicos/genética , Transdução de Sinais/fisiologia , Estresse Fisiológico/efeitos dos fármacos , Proteínas de Ligação a Telômeros/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA