Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Ginseng Res ; 47(1): 89-96, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36644379

RESUMO

Background and aim: Panax ginseng, a key herbal medicine of replenishing Qi and tonifying Spleen, is widely used in the treatment of gastrointestinal diseases in East Asia. In this study, we aim to investigate the potential effects and mechanisms of polysaccharides from P. ginseng (PGP) on intestinal mucosal restitution which is one of the crucial repair modalities during the recovery of mucosal injury controlled by the Ca2+ signaling. Methods: Rat model of intestinal mucosal injury was induced by indomethacin. The fractional cell migration was carried out by immunohistochemistry staining with BrdU. The morphological observations on intestinal mucosal injury were also performed. Intestinal epithelial cell (IEC-6) migration in vitro was conducted by scratch method. Western-blot was adopted to determine the expressions of PLC-γ1, Rac1, TRPC1, RhoA and Cav-1. Immunoprecipitation was used to evaluate the levels of Rac1/PLC-γ1, RhoA/TRPC1 and Cav-1/TRPC1. Results: The results showed that PGP effectively reduced the assessment of intestinal mucosal injury, reversed the inhibition of epithelial cell migration induced by Indomethacin, and increased the level of Ca2+ in intestinal mucosa in vivo. Moreover, PGP dramatically promoted IEC-6 cell migration, the expression of Ca2+ regulators (PLC-γ1, Rac1, TRPC1, Cav-1 and RhoA) as well as protein complexes (Rac1/PLC-γ1, Cav-1/TRPC1 and RhoA/TRPC1) in vitro. Conclusion: PGP increases the Ca2+ content in intestinal mucosa partly through controlling the regulators of Ca2+ mobilization, subsequently promotes intestinal epithelial cell migration, and then prevents intestinal mucosal injury induced by indomethacin.

2.
BMC Neurol ; 21(1): 473, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34872506

RESUMO

BACKGROUND: We examined for the first time the imaging characteristics of Holmes tremor (HT) through multimodal 3D medical imaging. CASE PRESENTATION: Three patients with Holmes tremor who visited the Affiliated Hospital of Chengdu University of TCM from August 2018 to April 2021 were retrospectively investigated to summarize their clinical and imaging data. RESULTS: Holmes tremor in two of the three patients was caused by hypertensive cerebral hemorrhage and in the third patient induced by hemorrhage due to ruptured brain arteriovenous malformations. HT occurred 1 to 24 months after the primary disease onset and manifested as a tremor in the contralateral limb, mostly in the upper portion. Cranial MRI showed that the lesions involved the thalamus in all three patients. The damaged thalamic nuclei included the ventral anterior nucleus, ventral lateral nucleus and ventromedial lateral nucleus, and the damaged nerve fibers included left thalamocortical tracts in one patient. In the other two patients, the damaged thalamic nuclei included the centromedian and dorsomedial nucleus, and the damaged nerve fibers included left cerebellothalamic and thalamocortical tracts. One patient showed significant improvement after treatment with pramipexole while the other two patients exhibited a poor response, one of whom had no response to the treatment with pramipexole and was only significantly relieved by clonazepam. CONCLUSION: We used multimodal 3D medical imaging for the first time to analyze the pathogenesis of HT and found that multiple thalamic nuclei were damaged. The damaged nuclei and nerve fiber tracts of two patients were different from those of the third patient, with different clinical manifestations and therapeutic effects. Therefore, it is speculated that there may be multiple pathogeneses for HT.


Assuntos
Ataxia , Tremor , Humanos , Estudos Retrospectivos , Tálamo , Tremor/diagnóstico por imagem , Tremor/tratamento farmacológico , Tremor/etiologia , Núcleos Ventrais do Tálamo
3.
Saudi Pharm J ; 29(10): 1223-1232, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34744477

RESUMO

Epithelial cell proliferation has been demonstrated to be a critical modality for mucosal repair after gastrointestinal mucosal injury. This research aimed to investigate the effect of total ginsenosides upon the proliferation of intestinal epithelial cells (IEC-6), and elucidate its potential mechanisms through polyamine-regulated pathway including the expression of proliferation-related proteins. Total ginsenosides (PGE3) were extracted from Panax ginseng, a Chinese herbal medicine, whose chromatogram was obtained by high performance liquid chromatographic method with evaporative light scattering detection (HPLC-ELSD). The cell proliferation, cell cycle distribution and the level of c-Myc, RhoA, Cdk2 proteins were detected to determine the effects of PGE3 at 25, 50 and100 mg/l doses on IEC-6. Furthermore, rats model of intestinal mucosal injury were induced by the subcutaneous injection of indomethacin, and the effect of Panax ginseng aqueous extracts (PGE1) on intestinal mucosal injury was observed. PGE3 could promote IEC-6 cell proliferation, reduce the proportion of G0/G1 phase cells and elevate the proportion of G2/M + S phase cells, and revert the proliferation and cell cycle arrest induced by DFMO (DL-a-difluoromethylornithine, an inhibitor of polyamines synthesis). PGE3 exposure enhanced the level of c-Myc, RhoA and Cdk2 proteins, and reversed the inhibition of these proteins expression induced by DFMO. The results of gross and pathological scores showed administration of PGE1 significantly alleviated intestinal mucosal injury of rats. Our findings indicate that total ginsenosides promoted the IEC-6 proliferation presumably via its regulation on cell cycle and the expression of proliferation-related proteins regulated by polyamines, and provided a novel perspective for exploring the repair effect of Panax ginseng upon gastrointestinal mucosal injury.

4.
Neurosci Lett ; 699: 177-183, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30753912

RESUMO

Axon regeneration after cerebral ischemia in mammals is inadequate to restore function, illustrating the need to design better strategies for improving outcomes. Improvement of axon regeneration has been achieved through fastigial nucleus electrostimulation (FNS) in animal researches. However, the mechanisms underlying this neuroprotection remain poorly understood. Increasing the levels of the second messenger cyclic AMP (cAMP) enhances axon regeneration, making it an excellent candidate molecule that has therapeutic potential. In the present study, we examined the expression of cAMP signaling in ischemic brain tissues following focal cerebral ischemia. Adult rats were subjected to ischemia induced by middle cerebral artery occlusion (MCAO). A dipolar electrode was placed into the cerebellum to stimulate the cerebellar fastigial nucleus for 1 h after ischemia. Neurological deficits and the expressions of cAMP, PKA (protein kinase A) and ROCK (Rho-kinase) were determined. Axonal regeneration was measured by upregulation of growth-associated protein 43 (GAP43). The data indicated that FNS significantly enhanced axonal regeneration and motor function recovery after cerebral ischemia. FNS also significantly increased cAMP and PKA levels after ischemic brain injury. All the beneficial effects of FNS were blocked by Rp-cAMP, an antagonist of PKA. Our research suggested that the axonal regeneration conferred by FNS was likely achieved via the regulation of cAMP/PKA pathway.


Assuntos
Núcleos Cerebelares/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Terapia por Estimulação Elétrica , Infarto da Artéria Cerebral Média/terapia , Regeneração Nervosa , Transdução de Sinais , Animais , Núcleos Cerebelares/efeitos dos fármacos , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Proteína GAP-43/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Masculino , Regeneração Nervosa/efeitos dos fármacos , Ratos , Recuperação de Função Fisiológica/efeitos dos fármacos , Tionucleotídeos/farmacologia , Regulação para Cima , Quinases Associadas a rho/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA