RESUMO
Psoriasis is a common immune-mediated inflammatory skin disease, caused by disturbed interactions between keratinocytes and immune cells. Chinese medicine shows potential clinical application for its treatment. Liquiritin is a flavone compound extracted from licorice and shows potential antitussive, antioxidant and antiinflammatory effects, and therefore may have potential as a psoriasis therapeutic. The aim of this work was to examine the possible roles that liquiritin may have in treating psoriasis. HaCaT cells were stimulated by TNF-α with or without liquiritin, harvested for analysis by western blots and RT-qPCR, and the cellular supernatants were collected and analyzed by ELISA for cytokines. In addition, 4 groups of mice were examined: Normal, Vehicle, LQ-L and LQ-H. The mice were sacrificed after 6 days and analyzed using IHC, ELISA, RT-qPCR and flow cytometry. The results showed that liquiritin could significantly inhibit the progression of psoriasis both in vitro and in vivo. Liquiritin strongly suppressed the proliferation of HaCaT keratinocytes but did not affect cell viability. Moreover, liquiritin alleviated imiquimod-induced psoriasis-like skin inflammation and accumulation of Th17 cells and DCs in vivo. In TNF-α-induced HaCaT keratinocytes, both protein and mRNA expression levels of inflammatory cytokines were sharply decreased. In imiquimod-induced mice, the activation of NF-κB and AP-1 was reduced after treatment with liquiritin. Collectively, our results show that liquiritin might act as a pivotal regulator of psoriasis via modulating NF-κB and AP-1 signal pathways.
Assuntos
Flavanonas , Glucosídeos , NF-kappa B , Psoríase , Camundongos , Animais , NF-kappa B/metabolismo , Fator de Transcrição AP-1/metabolismo , Imiquimode/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Células Th17 , Linhagem Celular , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Queratinócitos , Citocinas/metabolismo , Proliferação de Células , Camundongos Endogâmicos BALB C , Modelos Animais de DoençasRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Acute lung injury (ALI) is one of the fatal complications of respiratory virus infections such as influenza virus and coronavirus, which has high clinical morbidity and mortality. Jinhua Qinggan granules (JHQG) has been approved by China Food and Drug Administration in the treatment of H1N1 influenza and mild or moderate novel coronavirus disease 2019 (COVID-19), which is an herbal formula developed based on Maxingshigan decoction and Yinqiao powder that have been used to respiratory diseases in China for thousands of years. However, the underlying mechanism of JHQG in treating infectious diseases remains unclear. AIM OF THE STUDY: This study investigated the effects of JHQG on neutrophil apoptosis and key signaling pathways in lipopolysaccharide (LPS) -induced ALI mice in order to explore its mechanism of anti-inflammation. MATERIALS AND METHODS: The effect of JHQG on survival rate was observed in septic mouse model by intraperitoneal injection of LPS (20 mg/kg). To better pharmacological evaluation, the mice received an intratracheal injection of 5 mg/kg LPS. Lung histopathological changes, wet-to-dry ratio of the lungs, and MPO activity in the lungs and total protein concentration, total cells number, TNF-α, IL-1ß, IL-6, and MIP-2 levels in BALF were assessed. Neutrophil apoptosis rate was detected by Ly6G-APC/Annexin V-FITC staining. Key proteins associated with apoptosis including caspase 3/7 activity, Bcl-xL and Mcl-1 were measured by flow cytometry and confocal microscope, respectively. TLR4 receptor and its downstream signaling were analyzed by Western blot assay and immunofluorescence, respectively. RESULTS: JHQG treatment at either 6 or 12 g/kg/day resulted in 20% increase of survival in 20 mg/kg LPS-induced mice. In the model of 5 mg/kg LPS-induced mice, JHQG obviously decreased the total protein concentration in BALF, wet-to-dry ratio of the lungs, and lung histological damage. It also attenuated the MPO activity and the proportion of Ly6G staining positive neutrophils in the lungs, as well as the MIP-2 levels in BALF were reduced. JHQG inhibited the expression of Mcl-1 and Bcl-xL and enhanced caspase-3/7 activity, indicating that JHQG partially acted in promoting neutrophil apoptosis via intrinsic mitochondrial apoptotic pathway. The levels of TNF-α, IL-1ß, and IL-6 were significantly declined in LPS-induced mice treated with JHQG. Furthermore, JHQG reduced the protein expression of TLR4, MyD88, p-p65 and the proportion of nuclei p65, suggesting that JHQG treatment inhibited TLR4/MyD88/NF-κB pathway. CONCLUSION: JHQG reduced pulmonary inflammation and protected mice from LPS-induced ALI by promoting neutrophil apoptosis and inhibition of TLR4/MyD88/NF-κB pathway, suggesting that JHQG may be a promising drug for treatment of ALI.
Assuntos
Lesão Pulmonar Aguda , COVID-19 , Vírus da Influenza A Subtipo H1N1 , Camundongos , Animais , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Lipopolissacarídeos/toxicidade , Fator 88 de Diferenciação Mieloide/metabolismo , Neutrófilos , Fator de Necrose Tumoral alfa/metabolismo , Vírus da Influenza A Subtipo H1N1/metabolismo , Interleucina-6/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/uso terapêutico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , ApoptoseRESUMO
Malignant tumor is one of the major diseases with high morbidity and mortality. The purpose of this study is to prepare berberine hydrochloride (BH) in situ thermo-sensitive hydrogel based on glycyrrhetinic acid (GA) modified nano graphene oxide (NGO) (GA-BH-NGO-gel). NGO was taken as the photosensitizer, GA was taken as the target molecule, and BH was taken as the model drug. The physicochemical properties and anti-tumor activity in vivo and in vitro were also studied. This subject could provide a certain theoretical basis for the chemo-photothermal therapy combined treatment of malignant tumor. The release behavior of GA-BH-NGO-gel in vitro presented sustained and temperature-dependent drug release effect. The anti-tumor activity studies in vivo and in vitro had shown that GA-BH-NGO-gel had stronger anti-tumor activity, which could be targeting distributed to the tumor tissues. Moreover, the inhibitory effect of GA-BH-NGO-gel was enhanced when combined with 808 nm of laser irradiation. In this research, the chemo-photothermal combination therapy was applied into the tumor treatment, which may provide certain research ideas for the clinical treatment of malignant tumor.
Assuntos
Carcinoma Hepatocelular , Ácido Glicirretínico , Grafite , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Doxorrubicina , Grafite/química , Humanos , Hidrogéis , Neoplasias Hepáticas/tratamento farmacológico , Óxidos/química , Terapia FototérmicaRESUMO
BACKGROUND: We report herein the synthesis of a novel dicationic boron dipyrromethene derivative (compound 3) which is symmetrically substituted with two trimethylammonium styryl groups. METHODS: The antibacterial photodynamic activity of compound 3 was determined against sixteen methicillin-resistant Staphylococcus aureus (MRSA) strains, including four ATCC type strains (ATCC 43300, ATCC BAA-42, ATCC BAA-43, and ATCC BAA-44), two mutant strains [AAC(6')-APH(2") and RN4220/pUL5054], and ten nonduplicate clinical strains of hospital- and community-associated MRSA. Upon light irradiation, the minimum bactericidal concentrations of compound 3 were in the range of 1.56-50 µM against all the sixteen MRSA strains. Interestingly, compound 3 was not only more active than an analogue in which the ammonium groups are not directly connected to the n-conjugated system (compound 4), but also showed significantly higher (p < 0.05) antibacterial potency than the clinically approved photosensitizer methylene blue. The skin irritation of compound 3 during topical application was tested on human 3-D skin constructs and proven to be non-irritant in vivo at concentrations below 1.250 mM. In the murine MRSA infected wound study, the colony forming unit reduction of compound 3 + PDT group showed significantly (p < 0.05) higher value (>2.5 log10) compared to other test groups except for the positive control. CONCLUSION: In conclusion, the present study provides a scientific basis for future development of compound 3 as a potent photosensitizer for photodynamic therapy for MRSA wound infection.
Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Fotoquimioterapia , Animais , Antibacterianos/farmacologia , Boro , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Fármacos Fotossensibilizantes/uso terapêutico , Porfobilinogênio/análogos & derivadosRESUMO
Context: Panax ginseng C. A. Meyer (Araliaceae) root and leaf have always been considered in the traditional theory as hot and cold properties, respectively.Objective: To clarify the hot and cold properties of ginseng root and leaf from a thermodynamic viewpoint.Materials and methods: Thirty ICR male mice were randomly assigned to control (water), ginseng root group (GRP) and ginseng leaf group (GLP) with a concentration of 0.075 g/mL; the volume was 0.1 mL/10 g (body mass) per day by intragastric administration for 20 days. Ultra-Performance Liquid Chromatography (UPLC) was used to determine quality control through seven ginsenosides contained in ginseng root and leaf. Rest metabolic rate (RMR) and energy expenditure were monitored every 9 days by TSE System. At the 20th day, serum T3 or T4, liver or brown adipose tissue (BAT) mitochondrial respiration were investigated.Results: The quality control of GRP and GLP were within requirements of 2015 China Pharmacopoeia. The RMR (mLO2/h) in GLP (47.95 ± 4.20) was significantly lower than control (52.10 ± 4.79) and GRP (55.35 ± 4.48). Mitochondrial protein concentration and respiration were significantly increased in GRP (BAT, 79.12 ± 2 .08 mg/g, 239.89 ± 10.24 nmol O2/min/g tissue; Liver, 201.02 ± 10.89, 202.44 ± 3.24) and decreased in GLP (BAT, 53.42 ± 3.48, 153.49 ± 5.58; Liver, 138.69 ± 5.69, 104.50 ± 6.25) compared with control.Conclusions: The hot and cold properties of ginseng root and leaf are correlated with thermogenic capacity and mitochondrial function of BAT and liver, which deserve to further research.
Assuntos
Mitocôndrias/efeitos dos fármacos , Panax , Extratos Vegetais/farmacologia , Folhas de Planta , Raízes de Plantas , Termogênese/efeitos dos fármacos , Animais , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Mitocôndrias/metabolismo , Extratos Vegetais/isolamento & purificação , Termogênese/fisiologiaRESUMO
BACKGROUND: Catalpol, a natural iridoid glycoside in Rehmannia glutinosa, can alleviate proteinuria associated with diabetic nephropathy (DN), however, whether catalpol has a protective effect against podocyte injury in DN remains unclear. METHODS: In this study, we used a high glucose (HG)-induced podocyte injury model to evaluate the protective effect and mechanism of catalpol against HG-induced podocyte injury. Cell viability was determined by the 3-(4,5-dimethylthiazolyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. The levels of lactate dehydrogenase (LDH), superoxide dismutase (SOD) and malondialdehyde (MDA) were measured by commercial assay kits. Cell apoptosis and reactive oxygen species (ROS) were determined by using flow cytometry. Tumour necrosis factor α (TNF-α), interleukin-1ß (IL-1ß) and interleukin-6 (IL-6) levels were determined by enzyme-linked immunosorbent assay (ELISA). The protein expression levels of B-cell lymphoma-2 (Bcl-2), Bcl2-associated x (Bax), cleaved caspase-3, nicotinamide adenine dinucleotide phosphate oxidase enzyme 4 (NOX4), toll-like receptor 4 (TLR4), myeloid differentiation primary response gene 88 (MyD88), p38 mitogen-activated protein kinase (p38 MAPK), phosphorylated p38 MAPK (p-p38 MAPK), nuclear factor kappa B inhibitor alpha (IκBα) and phosphorylated IκBα (p-IκBα) were measured by western blotting. In addition, Bcl-2, Bax, caspase-3 and nuclear factor kappa B (NF-κB) levels were determined by immunofluorescence staining. RESULTS: Catalpol significantly increased cell viability and decreased LDH release in HG-induced podocyte injury. Catalpol significantly decreased ROS generation, apoptosis, level of MDA, levels of inflammatory cytokine TNF-α, IL-1ß, and IL-6 and increased SOD activity in HG-induced podocyte injury. Moreover, catalpol significantly decreased expression of cleaved caspase-3, Bax, NOX4, TLR4, MyD88, p-p38 MAPK, p-IκBα and NF-κB nuclear translocation, as well as increased Bcl-2 expression in HG-induced podocyte injury. CONCLUSION: Catalpol can protect against podocyte injury by ameliorating apoptosis and inflammation. These protective effects may be attributed to the inhibition of NOX4, which alleviates ROS generation and suppression of the TLR4/MyD88 and p38 MAPK signaling pathways to prevent NF-κB activation. Therefore, catalpol could be a promising drug for the prevention of DN.
Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Glucose/efeitos adversos , Glucosídeos Iridoides/farmacologia , Podócitos/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Glucose/análise , Glucose/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Podócitos/citologia , Podócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Rehmannia/química , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismoRESUMO
The induced-apoptosis effect and mechanism of human esophageal cancer Ec-109 cells via tanshinone IIA was investigated. The Ec-109 cells were cultured in vitro with different concentrations of tanshinone IIA (2 µg/mL, 4 µg/mL, or 8 µg/mL) for 12, 24, 36, and 48 hours. MTT assay was used to evaluate the proliferative inhibition rate of tanshinone IIA on esophageal Ec-109 cells. After 24 hours of culturing in vitro, a control group was assigned. The apoptosis rate was detected by the AO/EB and annexin V-FITC/propidium iodide assay, and the protein levels of Caspase-4 and CHOP were determined by the Western blot technique. MTT data showed that tanshinone IIA could significantly inhibit the proliferation of Ec-109 cells with a dose- and time-dependent mode. Compared with the control group, tanshinone IIA could apparently induce apoptosis of Ec-109 cells, and the level of Caspase-4 and CHOP (p < 0.01) obviously increased. Tanshinone IIA can significantly induce the apoptosis of Ec-109 cells, which may take effect by the stress pathway of the endoplasmic reticulum.
Assuntos
Abietanos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Esofágicas/tratamento farmacológico , Abietanos/química , Caspases Iniciadoras/genética , Caspases Iniciadoras/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Salvia/química , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismoRESUMO
To investigate the inhibition effect of oxymatrine induces human lung cancer A549 cells apoptosis. The A549 cells were cultured for 24 h, than the various concentration of oxymatrine (2 mmol/L, 4 mmol/L, 8 mmol/L, 15 mmol/L) were added into different experimental group cells, and 5-fluorouracil were added into the positive control group cells for 12 h, 24 h, 36 h, 48 h respectively. The A549 cells inhibition rate, apoptosis, and the expression of Bcl-2 and Bax were examined by MTT method, Annexin V/PI double staining method, real-time quantitative PCR and western blot, respectively. At same time, the morphological changes of A549 cells were observed with an inverted microscope. In the range of 2 mmol/L~15 mmol/L, oxymatrine had obvious inhibition effects on the proliferation of A549 cells. Compared with the negative control group, it has significantly different (P<0.01). There was remarkably the time- and dose-dependent correlation. After A549 cells were treated with 8 mmol/L oxymatrine for 24 h, the morphological change of cell apoptosis was observed and the extent of apoptosis was quantified by flow cytometry. Furthermore, the expression of Bcl-2 was reduced and the expression of Bax was increased remarkably (P<0.05). Oxymatrine has significant inhibition effects on the cells proliferation and the effects showed time-dependent and dose-dependent. Oxymatrine can induce apoptosis of the A549 cells by regulating the expression of Bcl-2 and Bax.
Assuntos
Alcaloides/administração & dosagem , Apoptose/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/fisiopatologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Quinolizinas/administração & dosagem , Proteína X Associada a bcl-2/metabolismo , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/administração & dosagem , Humanos , Neoplasias Pulmonares/patologia , Resultado do TratamentoRESUMO
Eriocalyxin B (EriB), a diterpenoid isolated from Isodon eriocalyx, was previously reported to have antitumor effects via multiple pathways, and these pathways are related to immune responses. In this study, we demonstrated that EriB was efficacious in experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. Treatment with EriB led to amelioration of EAE, which correlated with reduced spinal cord inflammation and demyelination. EriB treatment abolished encephalitogenic T-cell responses to myelin oligodendrocyte glycoprotein in an adoptive transfer EAE model. The underlying mechanism of EriB-induced effects involved inhibition of T helper (Th) 1 and Th17 cell differentiation through Janus Kinase/Signal Transducer and Activator Of Transcription and Nuclear factor-κB signaling pathways as well as elevation of reactive oxygen species. These findings indicate that EriB exerts potent antiinflammatory effects through selective modulation of pathogenic Th1 and Th17 cells by targeting critical signaling pathways. The study provides insights into the role of EriB as a unique therapeutic agent for the treatment of autoimmune diseases.