Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharmacol Rev ; 74(3): 823-873, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35738683

RESUMO

Carbon monoxide (CO) has been firmly established as an endogenous signaling molecule with a variety of pathophysiological and pharmacological functions, including immunomodulation, organ protection, and circadian clock regulation, among many others. In terms of its molecular mechanism(s) of action, CO is known to bind to a large number of hemoproteins with at least 25 identified targets, including hemoglobin, myoglobin, neuroglobin, cytochrome c oxidase, cytochrome P450, soluble guanylyl cyclase, myeloperoxidase, and some ion channels with dissociation constant values spanning the range of sub-nM to high µM. Although CO's binding affinity with a large number of targets has been extensively studied and firmly established, there is a pressing need to incorporate such binding information into the analysis of CO's biologic response in the context of affinity and dosage. Especially important is to understand the reservoir role of hemoglobin in CO storage, transport, distribution, and transfer. We critically review the literature and inject a sense of quantitative assessment into our analyses of the various relationships among binding affinity, CO concentration, target occupancy level, and anticipated pharmacological actions. We hope that this review presents a picture of the overall landscape of CO's engagement with various targets, stimulates additional research, and helps to move the CO field in the direction of examining individual targets in the context of all of the targets and the concentration of available CO. We believe that such work will help the further understanding of the relationship of CO concentration and its pathophysiological functions and the eventual development of CO-based therapeutics. SIGNIFICANCE STATEMENT: The further development of carbon monoxide (CO) as a therapeutic agent will significantly rely on the understanding of CO's engagement with therapeutically relevant targets of varying affinity. This review critically examines the literature by quantitatively analyzing the intricate relationships among targets, target affinity for CO, CO level, and the affinity state of carboxyhemoglobin and provide a holistic approach to examining the molecular mechanism(s) of action for CO.


Assuntos
Produtos Biológicos , Monóxido de Carbono , Monóxido de Carbono/metabolismo , Monóxido de Carbono/farmacologia , Humanos , Transdução de Sinais
2.
Chin J Nat Med ; 18(4): 284-295, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32402406

RESUMO

Carbon monoxide (CO) as one of the three important endogenously produced signaling molecules, termed as "gasotransmitter," has emerged as a promising therapeutic agent for treating various inflammation and cellular-stress related diseases. In this review, we discussed CO's evolution from a well-recognized toxic gas to a signaling molecule, and the effort to develop different approaches to deliver it for therapeutic application. We also summarize recently reported chemistry towards different CO delivery forms.


Assuntos
Monóxido de Carbono/química , Monóxido de Carbono/farmacologia , Animais , Descoberta de Drogas , Humanos , Estrutura Molecular , Pró-Fármacos/química , Pró-Fármacos/farmacologia
3.
Chin J Nat Med ; 18(4): 296-307, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32402407

RESUMO

Hydrogen sulfide (H2S) is commonly referred to as the third gasotransmitter with firmly established physiological roles. Prodrug approaches have been broadly applied to deliver H2S for various applications and mechanistic studies. Since S-persulfidation and glutathionylation are known to be important in cellular signaling by sulfur species, there have been interests in developing donors of persulfide and glutathione persulfide as well. In this review, we discuss the recent development in area of prodrugs for various sulfur species.


Assuntos
Sulfeto de Hidrogênio/química , Sulfeto de Hidrogênio/farmacologia , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Sulfetos/química , Sulfetos/farmacologia , Desenvolvimento de Medicamentos , Humanos , Estrutura Molecular
5.
Biochem Biophys Res Commun ; 524(3): 730-735, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32035620

RESUMO

Post-translational modifications (PTMs) play pivotal roles in controlling the stability and activity of the tumor suppressor p53 in response to distinct stressors. Here we report an unexpected finding of a short chain fatty acid modification of p53 in human cells. Crotonic acid (CA) treatment induces p53 crotonylation, but surprisingly reduces its protein, but not mRNA level, leading to inhibition of p53 activity in a dose dependent fashion. Surprisingly this crotonylation targets serine 46, instead of any predicted lysine residues, of p53, as detected in TCEP-probe labeled crotonylation and anti-crotonylated peptide antibody reaction assays. This is further confirmed by substitution of serine 46 with alanine, which abolishes p53 crotonylation in vitro and in cells. CA increases p53-dependent glycolytic activity, and augments cancer cell proliferation in response to metabolic or DNA damage stress. Since serine 46 is only found in human p53, our studies unveil an unconventional PTM unique for human p53, impairing its activity in response to CA. Because CA is likely produced by the gut microbiome, our results also predict that this type of PTM might play a role in early human colorectal neoplasia development by negating p53 activity without mutation of this tumor suppressor gene.


Assuntos
Crotonatos/metabolismo , Processamento de Proteína Pós-Traducional , Serina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Crotonatos/química , Glucose/deficiência , Glicólise , Humanos , Lisina/metabolismo , Mitocôndrias/metabolismo , Proteína Supressora de Tumor p53/química
6.
Bioorg Med Chem ; 23(21): 7061-8, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26432604

RESUMO

Due to the emergence and rapid spread of drug resistance in bacteria, there is an urgent need for the development of novel antimicrobials. SecA, a key component of the general bacterial secretion system required for viability and virulence, is an attractive antimicrobial target. Earlier we reported that systematical dissection of a SecA inhibitor, Rose Bengal (RB), led to the development of novel small molecule SecA inhibitors active against Escherichia coli and Bacillus subtilis. In this study, two potent RB analogs were further evaluated for activities against methicillin-resistant Staphylococcus aureus (MRSA) strains and for their mechanism of actions. These analogs showed inhibition on the ATPase activities of S. aureus SecA1 (SaSecA1) and SecA2 (SaSecA2), and inhibition of SaSecA1-dependent protein-conducting channel. Moreover, these inhibitors reduce the secretion of three toxins from S. aureus and exert potent bacteriostatic effects against three MRSA strains. Our best inhibitor SCA-50 showed potent concentration-dependent bactericidal activity against MRSA Mu50 strain and very importantly, 2-60 fold more potent inhibitory effect on MRSA Mu50 than all the commonly used antibiotics including vancomycin, which is considered the last resort option in treating MRSA-related infections. Protein pull down experiments further confirmed SaSecA1 as a target. Deletion or overexpression of NorA and MepA efflux pumps had minimal effect on the antimicrobial activities against S. aureus, indicating that the effects of SecA inhibitors were not affected by the presence of these efflux pumps. Our studies show that these small molecule analogs target SecA functions, have potent antimicrobial activities, reduce the secretion of toxins, and have the ability to overcome the effect efflux pumps, which are responsible for multi-drug resistance. Thus, targeting SecA is an attractive antimicrobial strategy against MRSA.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Anti-Infecciosos/química , Proteínas de Bactérias/antagonistas & inibidores , Staphylococcus aureus Resistente à Meticilina/enzimologia , Rosa Bengala/química , Adenosina Trifosfatases/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Cinética , Luz , Proteínas de Membrana Transportadoras/metabolismo , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Oxirredução , Estrutura Terciária de Proteína , Rosa Bengala/farmacologia , Canais de Translocação SEC , Proteínas SecA , Staphylococcus aureus/efeitos dos fármacos
7.
Int J Cardiol ; 195: 300-10, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26056963

RESUMO

BACKGROUND: Cystathionine-γ-lyase (CSE)-derived hydrogen sulfide (H2S) is a potent cardioprotective agent. We investigated the effects of diallyl trisulfide (DATS) on CSE expression and H2S generation in myocardium and examined whether DATS-mediated H2S generation effectively protects rat heart from diabetes-induced cardiac damage. METHODS: The correlations between the effects of hyperglycemia and diabetes on CSE expression and the effects of DATS and H2S on hyperglycemia and diabetes were examined in vitro in the cardiomyocyte cell line H9c2 and in vivo in hearts from rats with streptozotocin-induced diabetes mellitus (DM). RESULTS: Expression of CSE, a catalyst of H2S production, was suppressed in H9c2 cells treated with high glucose (33 mM) and in DM rat hearts. CSE suppression also correlated with a decrease in the activation of the pro-survival protein kinase Akt. Treatment of H9c2 cells with DATS resulted in increased CSE expression and a reduction in apoptosis via a mechanism involving IGF1R/pAkt signaling and by modulating the expression of reactive oxygen species-related enzymes. The role CSE plays in the cardioprotective effects of DATS was further confirmed by CSE inhibition assays including inhibitors and siRNA. CONCLUSION: DATS produces H2S as efficiently as NaSH and DATS-derived H2S provides effective cardioprotection. Further, our data indicate that H2S plays a major role in the protective effect of DATS against apoptosis of cardiomyocytes.


Assuntos
Compostos Alílicos/farmacologia , Apoptose/efeitos dos fármacos , Cardiomiopatias , Cistationina gama-Liase/metabolismo , Complicações do Diabetes/metabolismo , Alho , Sulfeto de Hidrogênio/metabolismo , Sulfetos/farmacologia , Animais , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Cardiotônicos/farmacologia , Linhagem Celular , Citoproteção , Modelos Animais de Doenças , Glucose/metabolismo , Humanos , Masculino , Modelos Cardiovasculares , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
8.
ChemMedChem ; 7(4): 571-7, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22354575

RESUMO

SecA is a central component of the general secretion system that is essential for bacterial growth and thus an ideal target for antimicrobial agents. A series of fluorescein analogues were first screened against the ATPase activity using the truncated unregulated SecA catalytic domain. Rose bengal (RB) and erythrosin B (EB) were found to be potent inhibitors SecA with IC(50) values of 0.5 µM and 2 µM, respectively. RB and EB inhibit the catalytic SecA ATPase more effectively than the F(1) F(0) -proton ATPase. We used three assays to test the effect of these compounds on full-length SecA ATPase: in solution (intrinsic ATPase), in membrane preparation, and translocation ATPase. RB and EB show the following trend in terms of IC(50) values: translocation ATPase

Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Eritrosina/farmacologia , Fluoresceína/química , Rosa Bengala/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/enzimologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Eritrosina/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Concentração Inibidora 50 , Proteínas de Membrana Transportadoras , Modelos Moleculares , Transporte Proteico/efeitos dos fármacos , Rosa Bengala/química , Canais de Translocação SEC , Proteínas SecA
9.
Bioorg Med Chem ; 18(4): 1617-25, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20096592

RESUMO

SecA ATPase is a critical member of the Sec family, which is important in the translocation of membrane and secreted polypeptides/proteins in bacteria. Small molecule inhibitors can be very useful research tools as well as leads for future antimicrobial agent development. Based on previous virtual screening work, we optimized the structures of two hit compounds and obtained SecA ATPase inhibitors with IC(50) in the single digit micromolar range. These represent the first low micromolar synthetic inhibitors of bacterial SecA and will be very useful for mechanistic studies.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Proteínas de Bactérias/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , Escherichia coli/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Proteínas de Membrana Transportadoras , Testes de Sensibilidade Microbiana , Modelos Moleculares , Modelos Teóricos , Canais de Translocação SEC , Proteínas SecA , Espectrometria de Massas por Ionização por Electrospray
10.
ChemMedChem ; 3(8): 1242-9, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18537200

RESUMO

Quorum sensing has been implicated in the control of pathologically relevant bacterial behavior such as secretion of virulence factors, biofilm formation, sporulation, and swarming motility. The AI-2 quorum sensing pathway is found in both gram-positive and gram-negative bacteria. Therefore, antagonizing AI-2 quorum sensing is a possible approach to modifying bacterial behaviour. However, efforts in developing inhibitors of AI-2-mediated quorum sensing are especially lacking. High-throughput virtual screening using the V. harveyi LuxP crystal structure identified two compounds that were found to antagonize AI-2-mediated quorum sensing in V. harveyi without cytotoxicity. The sulfone functionality of these inhibitors was identified as critical to their ability to mimic the natural ligand in their interactions with Arg 215 and Arg 310 of the active site.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Percepção de Quorum/efeitos dos fármacos , Vibrio/efeitos dos fármacos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Avaliação Pré-Clínica de Medicamentos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonas/química , Sulfonas/farmacologia , Tioamidas/química , Tioamidas/farmacologia , Vibrio/metabolismo
11.
Bioorg Med Chem ; 16(10): 5473-81, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18467109

RESUMO

A series of novel l-lysine derivatives were designed, synthesized, and assayed for their inhibitory activities on amino-peptidase N (APN)/CD13 and matrix metalloproteinase-2 (MMP-2). The preliminary biological test showed that most of the compounds displayed a high inhibitory activity against MMP-2 and a low activity against APN except compound B6 which exhibited good potency (IC(50)=13.2microM) similar with APN inhibitor Bestatin (IC(50)=15.5microM), and could be used as lead compound in the future.


Assuntos
Antígenos CD13/antagonistas & inibidores , Desenho de Fármacos , Lisina/farmacologia , Relação Quantitativa Estrutura-Atividade , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Concentração Inibidora 50 , Leucina/análogos & derivados , Leucina/farmacologia , Lisina/análogos & derivados , Lisina/síntese química , Inibidores de Metaloproteinases de Matriz , Modelos Moleculares , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade
12.
Clin Cancer Res ; 12(1): 273-80, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16397052

RESUMO

PURPOSE: PS-341 (bortezomib, Velcade), the first proteasome inhibitor approved by the Food and Drug Administration for the treatment of patients with relapsed multiple myeloma, induces apoptosis in human cancer cell lines. Vitamin C (ascorbic acid) is an essential water-soluble vitamin required for many normal physiologic functions and has to be obtained through diet or supplemental tablets in humans. Here we studied the potential effect of vitamin C on the anticancer activity of PS-341 in human cancer cell lines. EXPERIMENTAL DESIGN: The effects of vitamin C on apoptosis induction by PS-341 alone and by PS-341 combined with tumor necrosis factor-related apoptosis-inducing ligand were studied. In addition, the effects of vitamin C and other antioxidants on PS-341-mediated proteasome inhibition were also examined. Finally, the direct chemical interaction between vitamin C and PS-341 was determined. RESULTS: Vitamin C abrogated the ability of PS-341 to induce apoptosis in various human cancer cell lines, to induce G(2)-M arrest, and to augment apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand. Moreover, vitamin C suppressed PS-341-mediated inhibition of proteasome activity. PS-341 itself did not induce generation of intracellular reactive oxygen species whereas other antioxidants failed to abrogate its biological activity. Importantly, we detected a direct chemical interaction between vitamin C and PS-341. CONCLUSION: Vitamin C directly binds to PS-431, thus inactivating PS-341 independent of its antioxidant activity. Our findings suggest that vitamin C may have a negative effect on PS-341-mediated anticancer activity.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Ácido Ascórbico/farmacologia , Ácidos Borônicos/farmacologia , Pirazinas/farmacologia , Antineoplásicos/química , Antioxidantes/química , Ácido Ascórbico/química , Western Blotting , Ácidos Borônicos/química , Bortezomib , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Interações Medicamentosas , Humanos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Pirazinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA