RESUMO
In this presentation, we explored the molecular mechanisms of N. nucifera leaf water extracts (NLWEs) and polyphenol extract (NLPE) on scopolamine-induced cell apoptosis and cognition defects. The administration of NLWE and NLPE did not alter the body weight and serum biomarker rs and significantly ameliorated scopolamine-induced cognition impairment according to Y-maze test analysis. In mice, treatment with scopolamine disrupted normal histoarchitecture in the hippocampus, whereas the administration of NLWE and NLPE reversed the phenomenon. Western blot analysis revealed that scopolamine mitigated the expression of doublecortin (DCX), nestin, and NeuN, and cotreatment with NLWE or NLPE significantly recovered the expression of these proteins. NLWE and NLPE upregulated DCX and NeuN expression in the hippocampus region, as evidenced by immunohistochemical staining analysis of scopolamine-treated mice. NLWE and NLPE obviously elevated brain-derived neurotrophic factor (BDNF) and enhanced its downstream proteins activity. NLWE and NLPE attenuated scopolamine-induced apoptosis by reducing Bax and increased Bcl-2 expression. In addition, scopolamine also triggered apoptosis in human neuroblastoma SH-SY5Y cells whereas co-treatment with NLWE or quercetin-3-glucuronide (Q3G) reversed the phenomenon. NLWE or Q3G enhanced Bcl-2 and reduced Bax expression in the presence of scopolamine in SH-SY5Y cells. NLWE or Q3G recovered the inhibitory effects of scopolamine on neurogenesis and BDNF signals in SH-SY5Y cells. Overall, our results revealed that N. nucifera leaf extracts and Q3G promoted adult hippocampus neurogenesis and prevented apoptosis to mitigate scopolamine-induced cognition dysfunction through the regulation of BDNF signaling pathway.
Assuntos
Nelumbo , Neuroblastoma , Camundongos , Humanos , Animais , Escopolamina/farmacologia , Escopolamina/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Nelumbo/química , Nelumbo/metabolismo , Proteína X Associada a bcl-2/metabolismo , Neuroblastoma/metabolismo , Hipocampo/metabolismo , Neurogênese , Aprendizagem em Labirinto , Extratos Vegetais/química , CogniçãoRESUMO
Diabetic nephropathy, a major diabetes complication, is often exacerbated by glucolipotoxicity. The potential benefits of mulberry leaf extract (MLE) and its primary component, neochlorogenic acid (nCGA), in combating this condition have not been extensively explored. High-fat diet-fed db/db mice were employed as a model for glucolipotoxicity-induced diabetic nephropathy. The mice were treated with MLE or nCGA, and their body weight, insulin sensitivity, blood lipid profiles, and kidney function were assessed. In addition, modulation of the JAK-STAT, pAKT, Ras, and NF-κB signaling pathways by MLE and nCGA was evaluated. MLE and nCGA did not significantly decrease blood glucose level but effectively mitigated the adverse effects of a high-fat diet on blood lipid profile and kidney function. Improvements in body weight, insulin sensitivity, and kidney structure, along with a reduction in fibrosis, were observed. Both MLE and nCGA regulated lipid metabolism abnormalities, significantly inhibited the accumulation of glycosylated substances in glomeruli, and modulated crucial signaling pathways involved in diabetic nephropathy. Although they do not directly affect blood glucose level, MLE and nCGA show significant potential in managing glucolipotoxicity-induced diabetic nephropathy by targeting lipid metabolism and key molecular pathways. The present findings suggest MLE and nCGA may be promising therapeutic agents for diabetic nephropathy, and further exploration in human patients is warranted.
Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Resistência à Insulina , Morus , Extratos Vegetais , Animais , Humanos , Camundongos , Glicemia/metabolismo , Peso Corporal , Nefropatias Diabéticas/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Lipídeos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Morus/química , Extratos Vegetais/farmacologia , Folhas de Planta/químicaRESUMO
Non-alcoholic fatty liver disease (NAFLD) is mainly characterized by excessive fat accumulation in the liver. It spans a spectrum of diseases from hepatic steatosis to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Brassica juncea is rich in glucosinolates and has been proven to possess many potential pharmacological properties, including hypoglycemic, anti-oxidation, anti-inflammatory, and anti-carcinogenic activities. This study aims to investigate whether whole-plant Brassica juncea (WBJ) and its glucosinolates extracts (BGE) have hepatoprotective effects against a high-fat diet (HFD)-induced NAFLD and further explore the mechanism underlying this process in vivo and in vitro. WBJ treatment significantly reduced body fat, dyslipidemia, hepatic steatosis, liver injury, and inflammation; WBJ treatment also reversed the antioxidant enzyme activity to attenuate oxidative stress in HFD-fed rat liver. Moreover, WBJ and BGE enhanced the activation of AMPK to reduce SREBPs, fatty acid synthase, and HMG-CoA reductase but increased the expression of CPT-I and PPARα to improve hepatic steatosis. In addition, WBJ and BGE could ameliorate NAFLD by inhibiting TNF-α and NF-κB. Based on the above results, this study demonstrates that WBJ and BGE ameliorate HFD-induced hepatic steatosis and liver injury. Therefore, these treatments could represent an unprecedented hope toward improved strategies for NAFLD.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Ratos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Glucosinolatos/farmacologia , Mostardeira , Dieta Hiperlipídica/efeitos adversos , Antioxidantes/farmacologia , Extratos Vegetais/farmacologiaRESUMO
Mulberry leaf (Morus alba L.) is used as a traditional medicine and potential health food to treat various metabolic diseases, such as hypertension, diabetes, and hyperlipidemia. However, we sought the mechanisms by which functional components of mulberry leaves mediate diabetic steatohepatitis. We applied an in vitro model of HepG2 cells induced by glucolipotoxicity and evaluated the effects of MLE and its major components nCGA, Crp, and CGA. The results showed that MLE and nCGA reduced liver fat accumulation by inhibiting SREBP-1/FASN, SREBP-2/HMG-CoAR, and activating PPARα/CPT-1. Additionally, MLE and nCGA decreased inflammatory responses associated with NF-κB, TNF-α, and IL-6 to alleviate steatohepatitis. Furthermore, we showed that MLE and nCGA exerted anti-glucolipotoxicity effects by downregulating miR-34a, thus activating SIRT1/AMPK signaling, and subsequently suppressing hepatic lipid accumulation.
Assuntos
Fígado Gorduroso , MicroRNAs , Morus , Ácido Clorogênico/farmacologia , Ácido Clorogênico/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Folhas de Planta/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fígado Gorduroso/metabolismo , LipídeosRESUMO
Mulberry leaf (Morus alba L.) has been used as a health food and in traditional medicine to treat several metabolic diseases, including diabetes, hypertension, and hyperlipidemia. However, the mechanism by which mulberry leaf and its functional components mediate atherosclerosis remains unclear. This study aimed to determine the effect of mulberry leaf extract (MLE) and its major component, neochlorogenic acid (nCGA), on the proliferation and migration of rat aortic vascular smooth muscle cells (VSMCs, A7r5 cell line) under diabetic cultured conditions (oleic acid and high glucose, OH). Our findings showed that MLE and nCGA significantly inhibited cell proliferation and migration in A7r5 cells as determined by a scratch wound assay and a Transwell assay. Furthermore, we observed MLE and nCGA inhibited cell proliferation and migration, such as reducing the phosphoinositide 3-kinases (PI3K)/protein kinase B (Akt), focal adhesion kinase (FAK), and small GTPase proteins using Western blot analysis. In conclusion, we confirmed the anti-atherosclerotic effects of MLE and nCGA in reducing vascular smooth muscle cell (VSMC) migration and proliferation under diabetic cultured conditions via inhibition of FAK/small GTPase proteins, PI3K/Akt, and Ras-related signaling.
Assuntos
Aterosclerose , Proteínas Monoméricas de Ligação ao GTP , Morus , Animais , Aterosclerose/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Ácido Clorogênico/análogos & derivados , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Músculo Liso Vascular , Miócitos de Músculo Liso , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ácido Quínico/análogos & derivados , Ratos , Transdução de SinaisRESUMO
Ageing is one of the major risk factors of human diseases, including cancer, diabetes, and cardiovascular disease. Mulberry exhibits a wide range of functions, such as anti-oxidant, anti-inflammation, and anti-diabetes. In this study, we investigated the role of mulberry polyphenol extract (MPE) in K-Ras-induced senescence of smooth muscle cells. Forced expression of K-Ras enhanced senescence of smooth muscle A7r5 cells as shown by the elevation of ß-galactosidase activity. Treatment with MPE significantly repressed the Ras, phosphorylated ERK, and ß-galactosidase level. MPE triggered the association of cyclins with their corresponding cyclin-dependent protein kinases and hyperphosphorylated retinoblastoma (RB). MPE also down-regulated the levels of K-Ras-induced CDK inhibitors. MPE enhanced the phosphorylated AMP-dependent protein kinase (AMPK) and inducible nitric oxide synthase (iNOS) level in the presence of K-Ras. Pretreatment with either L-NAME or AMPK inhibitor reversed the effects of MPE. In addition, L-NAME and AMPK inhibitor repressed the MPE-induced total and phosphorylated 3-hydroxy-3-methylglutaryl coenzyme A (HMG-Co A) level. MPE repressed K-Ras-induced G0/G1 arrest, whereas L-NAME and AMPK inhibitor blocked the effects of MPE. Our results indicated that MPE recovered the K-Ras-induced senescence of vascular smooth muscle cells through iNOS and AMPK-dependent pathway. Our findings suggested that MPE may prevent ageing-induced atherosclerosis.
Assuntos
Senescência Celular/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Morus/química , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Acil Coenzima A/metabolismo , Células Cultivadas , Expressão Gênica , Humanos , Miócitos de Músculo Liso/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação , Proteólise , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , beta-Galactosidase/metabolismoRESUMO
Excessive alcohol intake is a major cause of chronic liver damage and is highly associated with the development of a spectrum of hepatic disorders, including steatohepatitis, liver cirrhosis, and liver cancer. Thus, we aimed to explore the hepatoprotective effects of an aqueous mulberry leaf extract (AME) on alcoholic fatty liver disorder (AFLD) by using a mouse model fed with excessive ethanol. Compared with the normal diet, the ethanol diet significantly increased the body weight of the mice, while the AME supplement reduced the weight gain caused by the ethanol diet. The ethanol diet also attenuated the activity of alcohol dehydrogenase and antioxidant enzymes but increased lipid peroxidation in the liver, which were reversed by AME supplementation. Additionally, AME supplementation diminished the ethanol diet-induced hepatic leukocyte infiltration and expressions of IL-6 and TNFα. Moreover, AME supplementation also reduced the ethanol-diet-induced lipid accumulation and expression of 1-acylglycerol-3-phosphate acyltransferase, acetyl-CoA carboxylase, low-density lipoprotein receptor, and sterol regulatory element-binding protein-1/2 in the liver. Collectively, AME supplementation improved liver lipid accumulation and proinflammatory response in mice induced by the ethanol diet, which was associated with the upregulation of ethanol-metabolizing enzymes and the downregulation of lipogenesis components.
RESUMO
Mulberry leaves (Morus alba L.), which are traditional Chinese herbs, exert several biological functions, such as antioxidant, anti-inflammation, antidiabetic, and antitumor. Alcohol intake increases inflammation and oxidative stress, and this increase causes liver injury and leads to liver steatosis, cirrhosis, and hepatocellular carcinoma, which are major health problems worldwide. Previous report indicated that mulberry leaf extract (MLE) exited hepatoprotection effects against chronic alcohol-induced liver damages. In this present study, we investigated the effects of MLE on acute alcohol and liver injury induced by its metabolized compound called acetaldehyde (ACE) by using in vivo and in vitro models. Administration of MLE reversed acute alcohol-induced liver damages, increased acetaldehyde (ACE) level, and decreased aldehyde dehydrogenase activity in a dose-dependent manner. Acute alcohol exposure-induced leukocyte infiltration and pro-inflammation factors, including cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6), were blocked by MLE in proportion to MLE concentration. MLE prevented alcohol-induced liver apoptosis via enhanced caveolin-1 expression and attenuated EGFR/STAT3/iNOS pathway using immunohistochemical analysis. ACE induced proteins, such as iNOS, COX-2, TNF-α, and IL-6, and inhibited superoxide dismutase expression, whereas co-treated with MLE reversed these proteins expression. MLE also recovered alcohol-induced apoptosis in cultured Hep G2 cells. Overall, our findings indicated that MLE ameliorated acute alcohol-induced liver damages by reducing ACE toxicity and inhibiting apoptosis caused by oxidative stress signals. Our results implied that MLE might be a potential agent for treating alcohol liver disease.
Assuntos
Acetaldeído/toxicidade , Antioxidantes/administração & dosagem , Hepatopatias Alcoólicas/tratamento farmacológico , Morus/química , Extratos Vegetais/administração & dosagem , Acetaldeído/metabolismo , Aldeído Desidrogenase/antagonistas & inibidores , Aldeído Desidrogenase/metabolismo , Animais , Antioxidantes/isolamento & purificação , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Ensaios Enzimáticos , Etanol/administração & dosagem , Etanol/efeitos adversos , Etanol/metabolismo , Células Hep G2 , Humanos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/patologia , Hepatopatias Alcoólicas/etiologia , Hepatopatias Alcoólicas/patologia , Camundongos , Camundongos Endogâmicos ICR , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Espécies Reativas de Oxigênio/metabolismoRESUMO
BACKGROUND: Insulin resistance could be associated with the development of Alzheimer disease (AD). The neuropathological hallmarks of AD are beta amyloid (Aß) produced from sequential cleavage initiated by ß-secretase and degraded by insulin degradation enzyme (IDE), as well as hyperphosphorylation of tau (p-tau). Insulin action involves the cascades of insulin receptor substrates (IRS) and phosphatidylinositol 3-kinase (PI3K), while phosphorylation of IRS-1 at ser307 (p-ser307IRS-1) hinders the response. Our previous report suggested dipeptidyl peptidase-4 (DPP-4) is crucial to insulin resistance, and the subfractions of Abelmoschus esculentus (AE), F1 and F2, attenuate the signaling. Here we aim to investigate whether AE works to reduce Aß generation via regulating DPP4 and insulin resistance. METHODS: The subfractions F1 and F2 were prepared according to a succession of procedures. F1 was composed by quercetin glycosides and triterpene ester, and F2 contained a large amount of polysaccharides. The in vitro insulin resistance model was established by SK-N-MC cell line treated with palmitate. MTT was used to define the dose range, and thereby Western blot, ELISA, and the activity assay were used to detect the putative markers. One-way ANOVA was performed for the statistical analysis. RESULTS: Treatment of palmitate induced the level of p-ser307IRS-1. Both F1 and F2 effectively decrease p-ser307IRS-1, and recover the expression of p-PI3K. However, the expression of total IRS plunged with 25 µg/mL of F1, while descended steadily with 5 µg/mL of F2. As palmitate increased the levels of Aß40 and Aß42, both AE subfractions were effective to reduce Aß generation of and ß-secretase activity, but IDE was not altered in any treatment conditions. The expression of DPP4 was also accompanied with insulin resistance signals. Inhibition of DPP4 attenuated the activity of ß-secretase and production of Aß. Moreover, the present data revealed that both AE subfractions significantly decrease the level of p-Tau. CONCLUSIONS: In conclusion, we demonstrated that AE would be a potential adjuvant to prevent insulin resistance and the associated pathogenesis of AD, and F2 seems more feasible to be developed.
Assuntos
Peptídeos beta-Amiloides/metabolismo , Dipeptidil Peptidase 4/metabolismo , Resistência à Insulina , Extratos Vegetais/farmacologia , Proteínas tau/metabolismo , Abelmoschus , Doença de Alzheimer/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Frutas , Humanos , TaiwanRESUMO
Nelumbo nucifera leaf water extract (NLE) attenuates high-fat diet (HFD)-induced rabbit atherosclerosis, but its mechanism of action and the relevant compounds remain unclear. Modulating the proliferation and migration of vascular smooth muscle cells (VSMCs) may be an enforceable strategy for atherosclerosis prevention. Therefore, we investigated the potential mechanisms of N. nucifera leaf polyphenol extract (NLPE) and its active ingredient gallic acid (GA) in VSMC proliferation and migration. A7r5 rat aortic VSMCs were provoked using 50 ng mL-1 tumor necrosis factor (TNF)-α; the NLPE or GA reduced the TNF-α-induced migration by inhibiting the transforming protein RhoA/cell division cycle protein 42 pathway. The NLPE or GA suppressed the TNF-α-induced VSMC proliferation by inhibiting the Ras pathway and increasing the expression of phosphatase and tensin homolog (PTEN), kinase suppressor of Ras 2, and inducible nitric oxide synthase. The NLPE or GA increased PTEN expression by downregulating microRNA (miR)-21 expression and reduced Ras and RhoA expression by upregulating miR-143 and miR-145 expression. The NLPE and GA use potentially prevents atherosclerosis by inhibiting the VSMC migration and proliferation. The mechanisms involve the regulation of the miRNA in PTEN, the Ras/extracellular-signal-regulated kinase pathway, and Rho family proteins.
Assuntos
Ácido Gálico/farmacologia , MicroRNAs/genética , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Nelumbo/química , Extratos Vegetais/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Folhas de Planta , Polifenóis , Ratos , Transdução de Sinais , Proteínas ras/metabolismo , Proteínas rho de Ligação ao GTP/metabolismoRESUMO
Obesity, being overweight and deposition of body fat are critically associated with metabolic disorders. The number of adipocytes and their lipid content, and the molecules involved in lipid metabolism are involved in obesity comorbidity. The food, Solanum nigrum L. (SN), has medical benefits in many aspects. In our recent report, SN was shown to reduce hepatic fat accumulation and oxidative stress, thus attenuating liver damage. However, it has not yet been explored whether SN is effective for weight loss and body fat reduction. Hence, we aimed to investigate if SN water extract (SWE) and the derived polyphenols (SNPE) are able to prevent obesity. Mice fed a high fat diet (HFD) and 3T3L1 cells model were used. The in vivo experiments showed SWE decreased serum triacylglyceride, cholesterol, and low-density lipoprotein (LDL)-cholesterol induced by a HFD. SWE promoted hepatic lipolysis by increasing PPARα and CPT-1, and inhibited lipogenesis by decreasing FaS and HMG-CoR. The expression of AMPK was enhanced, but sterol regulatory element binding proteins (SREBPs) were reduced by SWE, especially at 5%. In vitro analysis revealed that SNPE decreased the amount and lipid content of adipocytes. SNPE, especially at 0.5 mg mL-1, promoted lipolysis while inhibiting lipogenesis. In comparison with the doses applied in vivo and in vitro, the effect of SN could be attributed to the composition of the polyphenols. The results showed that SNPE is suggested to be an anti-obesity agent that is able to reduce body weight and body fat, by decreasing the amount and lipid content of adipocytes, and regulating lipid metabolism.
Assuntos
Tecido Adiposo/metabolismo , Fármacos Antiobesidade/administração & dosagem , Peso Corporal/efeitos dos fármacos , Obesidade/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Polifenóis/administração & dosagem , Solanum nigrum/química , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , LDL-Colesterol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Humanos , Lipogênese/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/metabolismo , Obesidade/fisiopatologia , PPAR alfa/genética , PPAR alfa/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismoRESUMO
Hepatocellular carcinoma (HCC) is one of the most common malignancies in Taiwan. Many risks factors induce liver chronic inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma. Mulberry fruits containing polyphenols to remove free radicals and mitigate inflammation has been reported to not only against gastric cancer, melanoma and leukemia but also prevent liver injury induced by alcohol or CCl4 in previous researches. The aim of this study is to examine whether Mulberry could inhibit hepatocarcinogenesis. In animal experiment, diethylnitrosamine (DEN) was used to induce hepatic tumorgenesis. After injecting DEN, the rats treated with mulberry water extracts (MWE) had less and smaller tumor than others without MWE. Moreover, MWE reduced the serum ALT and AST, HCC marker, cleavage caspases, Ser-15-p53 and Ser46-p53 induced by DEN. Further, we observed that mulberry polyphenol extracts (MPE) inhibited the cell growth of HepG2 cell and Hep3B cell. By using flow cytometry and western blotting methods, MPE induced HepG2 cell apoptosis by increase subG1 cells and the elevated expression of caspase-3/8/9. Instead of apoptosis, MPE caused Hep3B cells autophagy by inhibiting Akt and mTOR phosphorylation. Comprehensively, mulberry extracts has a potential to be a health supplement to prevent hepatocarcinogenesis in the future.
Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Morus/química , Extratos Vegetais/uso terapêutico , Animais , Frutas/química , RatosRESUMO
Delphinidin is a flavonoid belonging to dietary anthocyanidin family that has been reported to possess diverse anti-tumoral activities. However, the effects of delphinidin on colorectal cancer (CRC) cells and the underlying mechanisms are not fully understood. Thus, we aimed to investigate the anti-cancer activity of delphinidin in CRC cells and the underlying molecular mechanisms. The effects of delphinidin on the viability, metastatic characteristics, signaling, and microRNA (miR) profile of human CRC cell lines used were analyzed. In vivo metastasis was also evaluated using xenograft animal models. Our findings showed that delphinidin (<100 µM) inhibited the colony formation of DLD-1, SW480, and SW620 cells, but non-significantly affected cell viability. Delphinidin also suppressed the migratory ability and invasiveness of the tested CRC cell lines, downregulated integrin αV/ß3 expression, inhibited focal adhesion kinase (FAK)/Src/paxillin signaling, and interfered with cytoskeletal construction. Analysis of the miR expression profile revealed a number of miRs, particularly miR-204-3p, that were significantly upregulated and downregulated by delphinidin. Abolishing the expression of one upregulated miR, miR-204-3p, with an antagomir restored delphinidin-mediated inhibition of cell migration and invasiveness in DLD-1 cells as well as the αV/ß3-integrin/FAK/Src axis. Delphinidin also inhibited the lung metastasis of DLD-1 cells in the xenograft animal model. Collectively, these results indicate that the migration and invasion of CRC cells are inhibited by delphinidin, and the mechanism may involve the upregulation of miR-204-3p and consequent suppression of the αV/ß3-integrin/FAK axis. These findings suggest that delphinidin exerts anti-metastatic effects in CRC cells by inhibiting integrin/FAK signaling and indicate that miR-204-3p may play an important role in CRC metastasis.
Assuntos
Antocianinas/farmacologia , Neoplasias Colorretais/metabolismo , Suplementos Nutricionais , Quinase 1 de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Integrina alfaVbeta3/metabolismo , MicroRNAs/biossíntese , Proteínas de Neoplasias/metabolismo , RNA Neoplásico/biossíntese , Regulação para Cima/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular , Neoplasias Colorretais/patologia , Humanos , Invasividade Neoplásica , Metástase NeoplásicaRESUMO
Diet polyphenol can reportedly prevent the formation of breast-cancer cells. Nelumbo nucifera leaf extract (NLE) is enriched with polyphenols and has several cellular functions, such as anti-atherosclerosis, anti-inflammation, and antitumor. In this study, we investigated the role of NLE in the prevention of N-methyl-N-nitrosourea (NMU)-induced mammary tumor formation. Cotreatment with NLE significantly reduced the NMU-induced tumor incidence, number, and volume. NLE administration significantly repressed the tumor growth and weight of nude mice upon inoculation with BT-474 cancer cells. Immunohistochemical staining indicated that fatty acid synthetase, estrogen receptor (ER)-α, and phosphorylated ER-α were obviously reduced in the cancer part of BT-474 inoculated nude mice upon administration of 2% NLE. Western blot analysis revealed that NLE and NLPE (polyphenol-rich NLE) repressed ER-α expression and phosphorylation and decreased the phosphorylation of Her-2 without affecting their expression. Overall, NLE and NLPE exhibited more effective antitumor abilities in NMU-induced mammary cancer formation than with tamoxifen and Herceptin.
Assuntos
Neoplasias da Mama/tratamento farmacológico , Medicamentos de Ervas Chinesas/administração & dosagem , Receptor alfa de Estrogênio/metabolismo , Ácido Graxo Sintases/genética , Nelumbo/química , Receptor ErbB-2/genética , Animais , Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Regulação para Baixo/efeitos dos fármacos , Receptor alfa de Estrogênio/genética , Ácido Graxo Sintases/metabolismo , Feminino , Humanos , Metilnitrosoureia/efeitos adversos , Camundongos , Camundongos Nus , Ratos , Ratos Sprague-Dawley , Receptor ErbB-2/metabolismoRESUMO
Diabetic nephropathy is not only a common and severe microvascular complication of diabetes mellitus but also the leading cause of renal failure. Lotus (Nelumbo nucifera) possesses antioxidative and anticancer properties. The present study aimed to investigate the antidiabetic and renoprotective effects of N. nucifera leaf extract (NLE) in a rat model of type 2 diabetic mellitus. Male Sprague-Dawley rats with type 2 diabetes induced by a high-fat diet (HFD)/streptozotocin (STZ) were treated with NLE at dosages of 0.5% and 1% (w/w) daily for 6 weeks. At the end of the experimental period, body weight, serum glucose levels, insulin levels, and kidney function were assessed. Furthermore, antioxidant enzyme and lipid peroxide levels were determined in the kidney, and histopathological examination was performed using hematoxylin and eosin staining, periodic acid Schiff staining, and Masson trichrome staining. To shed light on the molecular mechanism underlying the functioning of NLE, mouse glomerular mesangial cells (MES-13) treated with high glucose (HG, 25 mM glucose) were chosen as a model for an examination of the signal transduction pathway of NLE. The results revealed that NLE improved diabetic kidney injury by reducing blood glucose, serum creatinine, and blood urea nitrogen levels and enhanced antioxidant enzyme activities in kidney tissue. Treatment with NLE significantly reduced the malondialdehyde and 8-hydroxy-2-deoxyguanosine levels and increased serum insulin levels; expression of renal superoxide dismutase, catalase, and glutathione peroxidase activities; and glutathione content. Histological studies have also demonstrated that NLE treatment inhibited the dilation of Bowman's capsule, which confirmed its renoprotective action in diabetes. In addition, treatment with NLE and its major component quercetin 3-glucuronide attenuated 25 mM HG-induced suppressed nuclear factor erythroid 2-related factor 2 and antioxidant enzyme expression in MES-13 cells. Collectively, these findings indicate that NLE may have antidiabetic and renoprotective effects against HFD/STZ-induced diabetes, at least in part, through antioxidative pathways.
Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Nelumbo/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/induzido quimicamente , Nefropatias Diabéticas/patologia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Masculino , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/análise , EstreptozocinaRESUMO
The association of Alzheimer disease (AD) and Diabetes (DM) is less clear. Accumulation of beta amyloid (Aß) and presence of hyperphosphorylated tau (p-tau) are hallmarks of AD, spreading in the region where insulin receptors are also found. Aß exerts neuron toxicity, and could disturb insulin signaling of phosphatidylinositol 3-kinase (PI3K), glycogen synthase kinase (GSK)-3ß and AMP-activated protein kinase (AMPK), but increase IRS-1-Ser307 phosphorylation which is viewed as insulin resistance marker. Previously we reported dipeptidyl peptidase-4 (DPP-4) mediate insulin resistance signals, and Abelmoschus esculentus (AE) subfractions F1 (rich in quercetin glucosides and triterpene ester) and F2 (containing large amount of polysaccharides) attenuate DPP-4-mediated apoptosis. In the present study, we aim to investigate if Aß induce neuron death by regulating DPP-4 and insulin resistance signals, and the putative effect of F1 and F2. By MTT, microscopy, and Western blotting, we demonstrate treatment of appropriate doses of AE subfractions prevent Aß-induced neuron apoptosis. F1 attenuate Aß-induced caspase 3 expression especially at 25 µg/mL, while F2 attenuate caspase 3 activation even at the low dose of 1 µg/mL. Both AE subfractions decrease Aß-enhanced DPP-4, but increase Aß-reduced p-AMPK and p-PI3K. The activity analysis reveals that F2 is more valid than F1 to reduce DPP-4 activity. The inhibition of DPP-4 demonstrates it plays the pivotal role in Aß-induced neuron apoptosis. Moreover, although both F1 and F2 are effective to inhibit p-IRS-1-Ser307, F2 takes advantage to reduce p-Tau while F1 is superior to enhance p-GSK-3ß. This implies AE subfractions act on different targets, and could be developed respectively. In conclusion, we demonstrate AE is potential to prevent Aß-induced neuron damage by regulating DPP-4 and the insulin resistance cascades. AE could be an adjuvant to protect neuron degenerative disease related to Aß and insulin resistance.
Assuntos
Abelmoschus/química , Peptídeos beta-Amiloides/metabolismo , Apoptose/efeitos dos fármacos , Dipeptidil Peptidase 4/metabolismo , Resistência à Insulina , Neurônios/metabolismo , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Linhagem Celular , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Humanos , Neurônios/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/químicaRESUMO
Abelmoschus esculentus (AE) has been used in traditional medicine to ameliorate hyperglycemia, but its mucilage increased bioassay difficulties. We have obtained a series of AE subfractions. Among them F1 and F2 regulated dipeptidyl peptidase-4 (DPP-4) and type 1 glucagon-like peptide receptor (GLP-1R), the treatment targets for type 2 diabetes. F1, F2 and fraction residues (FR) showed advantage on different aspects, which attenuates insulin resistance and metabolic disorder in vivo, and prevents renal-tubular change in vitro. In the present study, using type 2 diabetes model induced by high fat diet (HFD) and streptozotocin (STZ), we aim to investigate whether AE prevent diabetic nephropathy by regulating the putative markers. The results showed that all the subfractions ameliorated albuminuria and renal hyperfiltration (measured by creatinine clearance rate; CCr) accompanied with diabetes, while F2 acted most promptly and consistently. Histologically AE reduced renal tubular change, fibrosis and fat deposition. F2 and FR exerted significant effects to decrease DPP-4 while increase GLP-1R. Although all the subfractions were effective to reduce oxidative stress, only F2 acted on kidneys specifically. In conclusion, we have demonstrated AE has benefits to regulate DPP-4 and GLP-1R, to reduce oxidative stress and renal fibrosis, with resultant to improve renal function and prevent diabetic renal damage. Taken together, F2 could be more promising to be developed as adjuvant for diabetic nephropathy.
Assuntos
Abelmoschus/química , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/tratamento farmacológico , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/administração & dosagem , Medicamentos de Ervas Chinesas/administração & dosagem , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Animais , Nefropatias Diabéticas/metabolismo , Dipeptidil Peptidase 4/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-DawleyRESUMO
Epidemiological studies have revealed that obesity and being overweight are associated with increased cancer risk. Adipose tissue is regarded as an endocrine organ that secretes proinflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), which are related to the progression of hepatocellular carcinoma (HCC). In this study, adipocytes from 3T3-L1 cells were induced and stained with Oil Red O, which revealed marked intracellular lipid accumulation. Adding 15% conditioned medium (CM) from adipogenic -differentiated 3T3-L1 cells, which contained adipocyte-derived factors, to a culture medium of HepG2 cells was discovered to promote cell proliferation by a factor of up to 1.3 compared with the control. Mulberry leaf extract (MLE), with major components including chlorogenic acid and neochlorogenic acid, was revealed to inhibit CM-promoted HepG2 cell proliferation. The inhibitory effect of MLE on the proliferation of the signal network was evaluated. Expression of the CM-activated IκB/NFκB, STAT3, and Akt/mTOR pathways were reduced when MLE was administered. Although adipocyte-derived factors are complex, administrating anti-TNF-α and anti-IL-6 revealed that MLE blocks signal activation promoted by TNF-α and IL-6. Taken together, these results demonstrated that MLE targets the proliferation signal pathway of the inflammatory response of adipocytes in HCC and could be to prevent obesity-mediated liver cancer.
Assuntos
Adipócitos/efeitos dos fármacos , Carcinoma Hepatocelular/fisiopatologia , Proliferação de Células/efeitos dos fármacos , Interleucina-6/metabolismo , Neoplasias Hepáticas/fisiopatologia , Morus/química , Extratos Vegetais/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Diferenciação Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Células Hep G2 , Humanos , Interleucina-6/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/genéticaRESUMO
Atherosclerosis is characterized by the buildup of plaque inside arteries. Our recent studies demonstrated that polyphenolic natural products can reduce oxidative stress, inflammation, angiogenesis, hyperlipidemia, and hyperglycemia. A previous study also showed that mulberry water extract (MWE) can inhibit atherosclerosis and contains considerable amounts of polyphenols. Therefore, in the present study, we investigated whether mulberry polyphenol extract (MPE) containing high levels of polyphenolic compounds could affect vascular smooth muscle cell (VSMC; A7r5 cell) motility. We found that MPE inhibited expression of FAK, Src, PI3K, Akt, c-Raf, and suppressed FAK/Src/PI3K interaction. Further investigations showed that MPE reduced expression of small GTPases (RhoA, Cdc42, and Rac1) to affect F-actin cytoskeleton rearrangement, down-regulated expression of MMP2 and vascular endothelial growth factor (VEGF) mRNA through NFκB signaling, and thereby inhibited A7r5 cell migration. Taken together, these findings highlight MPE inhibited migration in VSMC through FAK/Src/PI3K signaling pathway.
Assuntos
Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Morus/química , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Quinases da Família src/metabolismo , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/genética , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/citologia , Fosfatidilinositol 3-Quinases/genética , Extratos Vegetais/isolamento & purificação , Polifenóis/isolamento & purificação , Ratos , Transdução de Sinais/efeitos dos fármacos , Quinases da Família src/genéticaRESUMO
Mulberry (Morus alba) leaf has been used in Chinese medicine as the remedy for hyperlipidemia and metabolic disorders. Recent report indicated Mulberry leaf extract (MLE) attenuated dyslipidemia and lipid accumulation in high fat diet (HFD)-fed mice. Non-alcoholic fatty liver (NAFLD) is generally considered as the liver component of metabolic syndrome. The hepatic lipid infiltration induces oxidative stress, and is associated with interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) which are regulated by the leptin and adiponectin. MLE could prevent obesity-related NAFLD via downregulating the lipogenesis enzymes while upregulating the lipolysis markers. Treatment of MLE, especially at 2%, enhanced the expression of superoxide dismutase (SOD) and clenched the oxidative stress of liver. MLE decreased the plasma level of leptin but increased adiponectin. The advantage of MLE is supposed mainly attributed to chlorogenic acid derivative. We suggest MLE, with promising outcome of research, could be nutraceutical to prevent obesity and related NAFLD.