Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 48(4): 890-899, 2023 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-36872259

RESUMO

Complicated chemical reactions occur in the decoction of traditional Chinese medicines(TCMs) which features complex components, influencing the safety, efficacy, and quality controllability of TCMs. Therefore, it is particularly important to clarify the chemical reaction mechanism of TCMs in the decoction. This study summarized eight typical chemical reactions in the decoction of TCMs, such as substitution reaction, redox reaction, isomerization/stereoselective reaction, complexation, and supramolecular reaction. With the "toxicity attenuation and efficiency enhancement" of aconitines and other examples, this study reviewed the reactions in decoction of TCMs, which was expected to clarify the variation mechanisms of key chemical components in this process and to help guide medicine preparation and safe and rational use of medicine in clinical settings. The current main research methods for chemical reaction mechanisms of decoction of TCMs were also summed up and compared. The novel real-time analysis device of decoction system for TCMs was found to be efficient and simple without the pre-treatment of samples. This device provides a promising solution, which has great potential in quantity evaluation and control of TCMs. Moreover, it is expected to become a foundational and exemplary research tool, which can advance the research in this field.


Assuntos
Medicina , Medicina Tradicional Chinesa , Projetos de Pesquisa
2.
Sensors (Basel) ; 22(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36365788

RESUMO

Gardeniae Fructus (GF) is one of the most widely used traditional Chinese medicines (TCMs). Its processed product, Gardeniae Fructus Praeparatus (GFP), is often used as medicine; hence, there is an urgent need to determine the stir-frying degree of GFP. In this paper, we propose a deep learning method based on transfer learning to determine the stir-frying degree of GFP. We collected images of GFP samples with different stir-frying degrees and constructed a dataset containing 9224 images. Five neural networks were trained, including VGG16, GoogLeNet, Resnet34, MobileNetV2, and MobileNetV3. While the model weights from ImageNet were used as initial parameters of the network, fine-tuning was used for four neural networks other than MobileNetV3. In the training of MobileNetV3, both feature transfer and fine-tuning were adopted. The accuracy of all five models reached more than 95.82% in the test dataset, among which MobileNetV3 performed the best with an accuracy of 98.77%. In addition, the results also showed that fine-tuning was better than feature transfer in the training of MobileNetV3. Therefore, we conclude that deep learning can effectively recognize the stir-frying degree of GFP.


Assuntos
Aprendizado Profundo , Medicamentos de Ervas Chinesas , Gardenia , Medicina Tradicional Chinesa , Frutas
3.
Plant Cell ; 33(8): 2869-2882, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34009315

RESUMO

Meiosis is a fundamental process for sexual reproduction in most eukaryotes and the evolutionarily conserved recombinases RADiation sensitive51 (RAD51) and Disrupted Meiotic cDNA1 (DMC1) are essential for meiosis and thus fertility. The mitotic function of RAD51 is clear, but the meiotic function of RAD51 remains largely unknown. Here we show that RAD51 functions as an interacting protein to restrain the Structural Maintenance of Chromosomes5/6 (SMC5/6) complex from inhibiting DMC1. We unexpectedly found that loss of the SMC5/6 partially suppresses the rad51 knockout mutant in terms of sterility, pollen inviability, and meiotic chromosome fragmentation in a DMC1-dependent manner in Arabidopsis thaliana. Biochemical and cytological studies revealed that the DMC1 localization in meiotic chromosomes is inhibited by the SMC5/6 complex, which is attenuated by RAD51 through physical interactions. This study not only identified the long-sought-after function of RAD51 in meiosis but also discovered the inhibition of SMC5/6 on DMC1 as a control mechanism during meiotic recombination.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Rad51 Recombinase/genética , Recombinases Rec A/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Pareamento Cromossômico , Cromossomos de Plantas , Regulação da Expressão Gênica de Plantas , Mutação com Perda de Função , Meiose , Complexos Multiproteicos/metabolismo , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Infertilidade das Plantas/genética , Pólen/genética , Rad51 Recombinase/metabolismo , Recombinases Rec A/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-34007295

RESUMO

Glaucocalyxin A (GLA) has various pharmacological effects like antioxidation, immune regulation, and antiatherosclerosis. Here, in this study, the effect and mechanism of GLA on mast cell degranulation were studied. The results of the anti-DNP IgE-mediated passive cutaneous anaphylaxis (PCA) showed that GLA dramatically inhibited PCA in vivo, as evidenced by reduced Evans blue extravasation and decreased ear thickness. In addition, GLA significantly reduced the release of histamine and ß-hexosaminidase, calcium influx, cytokine (IL-4, TNF-α, IL-1ß, IL-13, and IL-8) production in the RBL-2H3 (rat basophilic leukemia cells), and RPMCs (peritoneal mast cells) in vitro. Moreover, we further investigated the regulatory mechanism of GLA on antigen-induced mast cells by Western blot, which showed that GLA inhibited FcεRI-mediated signal transduction and invalidated the phosphorylation of Syk, Fyn, Lyn, Gab2, and PLC-γ1. In addition, GLA inhibited the recombinant mouse high mobility group protein B1- (HMGB1-) induced mast cell degranulation through limiting nuclear translocation of NF-κBp65. Treatment of mast cells with siRNA-HMGB1 significantly inhibited HMGB1 levels, as well as MyD88 and TLR4, decreased intracellular calcium levels, and suppressed the release of ß-hexosaminidase. Meanwhile, GLA increased NrF2 and HO-1 levels by activating p38MAPK phosphorylation. Consequently, these data suggest that GLA regulates the NrF2/HO-1 signaling pathway through p38MAPK phosphorylation and inhibits HMGB1/TLR4/NF-κB signaling pathway to reduce mast cell degranulation and allergic inflammation. Our findings could be used as a promising therapeutic drug against allergic inflammatory disease.

5.
Biosci Biotechnol Biochem ; 84(2): 268-278, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31690224

RESUMO

This study is to determine the role and mechanism of cryptotanshinone (CTS) in allergic airway inflammation. Asthma induced by OVA was established in BALB/c mice. We found increased airway hyperresponsiveness (AHR), increased inflammatory cell infiltration, elevated levels of TNF-α, interleukin-1ß (IL-1ß), IL-4, IL-5, IL-6 and IL-13, decreased interferon gamma (IFN-γ) in lung tissue, increased content of total immunoglobulin E (IgE), OVA specific IgE, Eotaxin, ICAM-1, VCAM-1, nuclear factor-kappaB (NF-κB) and phosphorylation of p38 MAPK in lung tissue. However, the administration of CTS significantly decreased AHR in asthmatic mice, reduced inflammation around the bronchioles and inflammatory cells around airway, regulated cytokine production, reduced the total IgE and OVA-specific IgE levels, and inhibited NF-κB activation and p38 MAPK phosphorylation. In vitro experiments in 16 HBE cells revealed that CTS attenuated CAM-1 and IL-6 expression. These results indicate that CTS alleviates allergic airway inflammation by modulating p38 MAPK phosphorylation and NF-κB activation.


Assuntos
Asma/patologia , Hipersensibilidade/patologia , Inflamação/patologia , NF-kappa B/metabolismo , Fenantrenos/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Asma/metabolismo , Hiper-Reatividade Brônquica , Líquido da Lavagem Broncoalveolar/citologia , Quimiotaxia de Leucócito/efeitos dos fármacos , Citocinas/metabolismo , Medicamentos de Ervas Chinesas , Feminino , Hipersensibilidade/metabolismo , Imunoglobulina E/metabolismo , Inflamação/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/toxicidade , Fosforilação
6.
Sci Rep ; 7(1): 12525, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28970580

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) pollutions often occur in marine and other saline environment, largely due to anthropogenic activities. However, study of the PAHs-degradation genotypes in halophiles is limited, compared with the mesophilic terrestrial PAHs degraders. In this study, a bacterial consortium (CY-1) was enriched from saline soil contaminated with crude oil using phenanthrene as the sole carbon source at 10% salinity. CY-1 was dominated by the moderate halophilic Marinobacter species, and its dominant PAHs ring-hydroxylating dioxygenase (RHD) genotypes shared high identity to the classic nah-related RHDs found in the mesophilic species. Further cloning of a 5.6-kb gene cluster from CY-1 unveiled the existence of a new type of PAHs degradation gene cluster (hpah), which most probably evolves from the nah-related gene clusters. Expression of the RHD in this gene cluster in E. coli lead to the discovery of its prominent salt-tolerant properties compared with two RHDs from mesophiles. As a common structural feature shared by all halophilic and halotolerant enzymes, higher abundance of acidic amino acids was also found on the surface of this RHD than its closest nah-related alleles. These results suggest evolution towards saline adaptation occurred after horizontal transfer of this hpah gene cluster into the halophiles.


Assuntos
Biodegradação Ambiental , Marinobacter/genética , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Plantas Tolerantes a Sal/genética , Dioxigenases/química , Dioxigenases/genética , Escherichia coli/genética , Genótipo , Atividades Humanas , Humanos , Marinobacter/química , Marinobacter/enzimologia , Consórcios Microbianos/genética , Petróleo/toxicidade , Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos/química , Tolerância ao Sal/genética , Plantas Tolerantes a Sal/química , Plantas Tolerantes a Sal/enzimologia , Microbiologia do Solo , Poluição Química da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA