RESUMO
Phosphorus (P) deficiency is the main hurdle in achieving sustainable crop production ps especially in calcareous soils. Using bio-fertilizers like phosphate solubilizing bacteria (PSB) could be a useful approach for sustainable P management as they improve P availability in soil via dissolution, desorption and mineralization reactions. In addition, application of organic amendments with PSB could further ameliorate soil conditions for sustainable management of immobilized nutrients in calcarious soils. Therefore, we performed pot experiment to study the role of PSB in nullifying antagonistic effects of liming (4.78, 10, 15 and 20%) on P availability from poultry manure (PM), farm yard manure (FYM), single super phosphate (SSP) and rock phosphate (RP) in alkaline soils. PSB inoculation improved wheat growth, P availability and stimulated soil acidification over control regardless of P sources and lime levels. Soil calcification adversely affected plant growth, P nutrition, induced soil salinity and alkalinity, however, PSB and manures application potentially nullified such harmful effects over mentioned traits. Individually, organic sources were superior than mineral sources however, the performance of mineral fertilizers with PSB was at par to sole application of manures. Furthermore, application of RP with PSB proved as effective as sole SSP. Therefore, using PSB as bio-fertilizer has huge potential for improving P availability in calcareous soils.
Assuntos
Fertilizantes , Solo , Bactérias , Fertilizantes/análise , Esterco , Fosfatos/análise , Fósforo , TriticumRESUMO
In this study, we proposed a novel IFAS-MBR with low aeration for the treatment of real municipal wastewater. With biocarriers packed in the anoxic tank, the pilot-scale IFAS-MBR operated with average dissolved oxygen concentrations of 0.56 mg/L in the oxic tank. Over 110 days of operation, highly efficient nutrient removal was achieved with the total nitrogen (TN) and phosphorus (TP) removal efficiencies of 78.1 ± 7.2% and 93.7 ± 5.8%, respectively. The average effluent concentrations of TN and TP reached 5.4 and 0.26 mg/L, respectively. Meanwhile, the removal efficiency of COD reached 95.3 ± 1.3% in the system, and the concentrations of COD decreased from 31.9 ± 3.7 (sludge supernatant) to 12.7 ± 1.6 mg/L (permeate) after membrane filtration. Microbial community analysis showed that Nitrosomonas (0.32%) and Nitrospira (1.85%) in activated sludge were the main drivers of the nitrification process, while various denitrifying bacteria in activated sludge and biofilms were responsible for nitrate reduction in the anoxic tank. Candidatus Accumulibacter (0.34%) and Dechloromonas (1.31%) primarily contributed to denitrifying phosphorus uptake in the anoxic tank. Furthermore, these organisms (i.e., core functional microbiota) exhibited stable levels over the entire operation. The highly enriched hydrolytic fermentation bacteria drove community succession, and the remarkable functional robustness of microbial communities in activated sludge and biofilms favored nutrient removal. Overall, the novel IFAS-MBR system provides an energy-efficient MBR alternative owing to its highly efficient performance and low operating costs enabled by low aeration rates and the absence of an external carbon source.
Assuntos
Microbiota , Águas Residuárias , Reatores Biológicos , Nitrogênio , Nutrientes , Fósforo , Esgotos , Eliminação de Resíduos LíquidosRESUMO
Tung tree (Vernicia fordii) is an economically important woody oil plant that produces tung oil rich in eleostearic acid. Here, we report a high-quality chromosome-scale genome sequence of tung tree. The genome sequence was assembled by combining Illumina short reads, Pacific Biosciences single-molecule real-time long reads, and Hi-C sequencing data. The size of tung tree genome is 1.12â¯Gb, with 28,422 predicted genes and over 73% repeat sequences. The V. fordii underwent an ancient genome triplication event shared by core eudicots but no further whole-genome duplication in the subsequent ca. 34.55 million years of evolutionary history of the tung tree lineage. Insertion time analysis revealed that repeat-driven genome expansion might have arisen as a result of long-standing long terminal repeat retrotransposon bursts and lack of efficient DNA deletion mechanisms. The genome harbors 88 resistance genes encoding nucleotide-binding sites; 17 of these genes may be involved in early-infection stage of Fusarium wilt resistance. Further, 651 oil-related genes were identified, 88 of which are predicted to be directly involved in tung oil biosynthesis. Relatively few phosphoenolpyruvate carboxykinase genes, and synergistic effects between transcription factors and oil biosynthesis-related genes might contribute to the high oil content of tung seed. The tung tree genome constitutes a valuable resource for understanding genome evolution, as well as for molecular breeding and genetic improvements for oil production.
Assuntos
Aleurites/genética , Aleurites/metabolismo , Evolução Molecular , Genômica , Óleos de Plantas/metabolismo , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genéticaRESUMO
We report here the design and multiple functions of a new hierarchical nanotheronostic platform consisting of an upconversion nanoparticle (UCNP) core: shell with an additional mesoporous silica (mSiO2) matrix load shell containing sealed, high concentration of ICG molecules. We demonstrate that this UCNP@mSiO2-ICG nanoplatform can perform the following multiple functions under NIR excitation at 800 nm: 1) Light harvesting by the UCNP shell containing Nd and subsequent energy transfer to Er in the Core to produce efficient green and red upconversion luminescence for optical imaging; 2) Efficient nonradiative relaxation and local heating produced by concentration quenching in aggregated ICG imbedded in the mesopourous silica shell to enable both photoacoustic imaging and photothermal therapy. Compared to pure ICG, sealing of mesoporous silica platforms prevents the leak-out and improves the stability of ICG by protecting from rapid hydrolysis. Under 800 nm laser excitation, we performed both optical and photoacoustic (PA) imaging in vitro and in vivo. Our results demonstrated that UCNP@mSiO2-ICG with sealed structures could be systemically delivered to brain vessels, with a long circulation time. In addition, these nanoplatforms were capable of producing strong hyperthermia efforts to kill cancer cells and hela cells under 800 nm laser irradiation.
Assuntos
Hipertermia Induzida , Verde de Indocianina/química , Nanopartículas/química , Imagem Óptica , Técnicas Fotoacústicas , Fototerapia , Dióxido de Silício/química , Nanomedicina Teranóstica/métodos , Animais , Galinhas , Células HeLa , Humanos , Camundongos , Nanopartículas/ultraestrutura , Espectrofotometria UltravioletaRESUMO
Surfactant-stripped, nanoformulated naphthalocyanines (nanonaps) can be formed with Pluronic F127 and low temperature membrane processing, resulting in dispersed frozen micelles with extreme contrast in the near infrared region. Here, we demonstrate that nanonaps can be used for multifunctional cancer theranostics. This includes lymphatic mapping and whole tumor photoacoustic imaging following intradermal or intravenous injection in rodents. Without further modification, pre-formed nanonaps were used for positron emission tomography and passively accumulated in subcutaneous murine tumors. Because the nanonaps used absorb light beyond the visible range, a topical upconversion skin cream was developed for anti-tumor photothermal therapy with laser placement that can be guided by the naked eye.
Assuntos
Neoplasias Experimentais/terapia , Fototerapia , Nanomedicina Teranóstica , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Nanopartículas , Tensoativos , Distribuição TecidualRESUMO
Although photoacoustic computed tomography (PACT) operates with high spatial resolution in biological tissues deeper than other optical modalities, light scattering is a limiting factor. The use of longer near infrared wavelengths reduces scattering. Recently, the rational design of a stable phosphorus phthalocyanine (P-Pc) with a long wavelength absorption band beyond 1000 nm has been reported. Here, we show that when dissolved in liquid surfactants, P-Pc can give rise to formulations with absorbance of greater than 1000 (calculated for a 1 cm path length) at wavelengths beyond 1000 nm. Using the broadly accessible Nd:YAG pulse laser emission output of 1064 nm, P-Pc could be imaged through 11.6 cm of chicken breast with PACT. P-Pc accumulated passively in tumors following intravenous injection in mice as observed by PACT. Following oral administration, P-Pc passed through the intestine harmlessly, and PACT could be used to non-invasively observe intestine function. When the contrast agent placed under the arm of a healthy adult human, a PACT transducer on the top of the arm could readily detect P-Pc through the entire 5 cm limb. Thus, the approach of using contrast media with extreme absorption at 1064 nm readily enables high quality optical imaging in vitro and in vivo in humans at exceptional depths.
Assuntos
Indóis/farmacocinética , Imagem Óptica/métodos , Fósforo/farmacocinética , Radiossensibilizantes/farmacocinética , Administração Intravenosa , Administração Oral , Animais , Fenômenos Químicos , Galinhas , Humanos , Indóis/química , Isoindóis , Camundongos , Fósforo/química , Técnicas Fotoacústicas/métodos , Radiossensibilizantes/químicaRESUMO
BACKGROUND: The Macleaya spp., including Macleaya cordata and Macleaya microcarpa, are traditional anti-virus, inflammation eliminating, and insecticide herb medicines for their isoquinoline alkaloids. They are also known as the basis of the popular natural animal food addictive in Europe. However, few studies especially at genomics level were conducted on them. Hence, we performed the Macleaya spp. transcriptome and integrated it with iTRAQ proteome analysis in order to identify potential genes involved in alkaloids biosynthesis. METHODOLOGY AND PRINCIPAL FINDINGS: We elaborately designed the transcriptome, proteome and metabolism profiling for 10 samples of both species to explore their alkaloids biosynthesis. From the transcriptome data, we obtained 69367 and 78255 unigenes for M. cordata and M. microcarpa, in which about two thirds of them were similar to sequences in public databases. By metabolism profiling, reverse patterns for alkaloids sanguinarine, chelerythrine, protopine, and allocryptopine were observed in different organs of two species. We characterized the expressions of enzymes in alkaloid biosynthesis pathways. We also identified more than 1000 proteins from iTRAQ proteome data. Our results strongly suggest that the root maybe the organ for major alkaloids biosynthesis of Macleaya spp. Except for biosynthesis, the alkaloids storage and transport were also important for their accumulation. The ultrastructure of laticifers by SEM helps us to prove the alkaloids maybe accumulated in the mature roots. CONCLUSIONS/SIGNIFICANCE: To our knowledge this is the first study to elucidate the genetic makeup of Macleaya spp. This work provides clues to the identification of the potential modulate genes involved in alkaloids biosynthesis in Macleaya spp., and sheds light on researches for non-model medicinal plants by integrating different high-throughput technologies.