Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202404295, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649323

RESUMO

Homogeneous electrocatalysts can indirect oxidate the high overpotential substrates through single-electron transfer on the electrode surface, enabling efficient operation of organic electrosynthesis catalytic cycles. However, the problems of this chemistry still exist such as high dosage, difficult recovery, and low catalytic efficiency. Single-atom catalysts (SACs) exhibit high atom utilization and excellent catalytic activity, hold great promise in addressing the limitations of homogeneous catalysts. In view of this, we have employed Fe-SA@NC as an advanced redox mediator to try to change this situation. Fe-SA@NC was synthesized using an encapsulation-pyrolysis method, and it demonstrated remarkable performance as a redox mediator in a range of reported organic electrosynthesis reactions, and enabling the construction of various C-C/C-X bonds. Moreover, Fe-SA@NC demonstrated a great potential in exploring new synthetic method for organic electrosynthesis. We employed it to develop a new electro-oxidative ring-opening transformation of cyclopropyl amides. In this new reaction system, Fe-SA@NC showed good tolerance to drug molecules with complex structures, as well as enabling flow electrochemical syntheses and gram-scale transformations. This work highlights the great potential of SACs in organic electrosynthesis, thereby opening a new avenue in synthetic chemistry.

2.
Nano Lett ; 23(7): 2905-2914, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36961203

RESUMO

Strain engineering is an attractive strategy for improving the intrinsic catalytic performance of heterogeneous catalysts. Manipulating strain on the short-range atomic scale to the local structure of the catalytic sites is still challenging. Herein, we successfully achieved atomic strain modulation on ultrathin layered vanadium oxide nanoribbons by an ingenious intercalation chemistry method. When trace sodium cations were introduced between the V2O5 layers (Na+-V2O5), the V-O bonds were stretched by the atomically strained vanadium sites, redistributing the local charges. The Na+-V2O5 demonstrated excellent photooxidation performance, which was approximately 12 and 14 times higher than that of pristine V2O5 and VO2, respectively. Complementary spectroscopy analysis and theoretical calculations confirmed that the atomically strained Na+-V2O5 had a high surficial charge density, improving the activation of oxygen molecules and contributing to the excellent photocatalytic property. This work provides a new approach for the rational design of strain-equipped catalysts for selective photooxidation reactions.

3.
Nat Commun ; 13(1): 1322, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277523

RESUMO

Copper-based materials can reliably convert carbon dioxide into multi-carbon products but they suffer from poor activity and product selectivity. The atomic structure-activity relationship of electrocatalysts for the selectivity is controversial due to the lacking of systemic multiple dimensions for operando condition study. Herein, we synthesized high-performance CO2RR catalyst comprising of CuO clusters supported on N-doped carbon nanosheets, which exhibited high C2+ products Faradaic efficiency of 73% including decent ethanol selectivity of 51% with a partial current density of 14.4 mA/cm-2 at -1.1 V vs. RHE. We evidenced catalyst restructuring and tracked the variation of the active states under reaction conditions, presenting the atomic structure-activity relationship of this catalyst. Operando XAS, XANES simulations and Quasi-in-situ XPS analyses identified a reversible potential-dependent transformation from dispersed CuO clusters to Cu2-CuN3 clusters which are the optimal sites. This cluster can't exist without the applied potential. The N-doping dispersed the reduced Cun clusters uniformly and maintained excellent stability and high activity with adjusting the charge distribution between the Cu atoms and N-doped carbon interface. By combining Operando FTIR and DFT calculations, it was recognized that the Cu2-CuN3 clusters displayed charge-asymmetric sites which were intensified by CH3* adsorbing, beneficial to the formation of the high-efficiency asymmetric ethanol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA