Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioelectromagnetics ; 36(7): 494-505, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26364557

RESUMO

Pulsed electromagnetic field (PEMF) therapy has been used for more than three decades to treat bone diseases. The main complaint about using PEMF is that it is time-consuming. Previously, we showed single-pulsed electromagnetic field (SPEMF) applied for 3 min daily increased osteogenic differentiation of mesenchymal stem cells and accelerated bone growth in a long bone defect model. In the current study, we investigated the mechanism of SPEMF to increase osteogenic differentiation in osteoblastic cells. We found that both short-term (SS) and long-term (SL) SPEMF treatment increased mineralization, while alkaline phosphatase (ALP) activity increased during the first 5 days of SPEMF treatment. SS treatment increased gene expression of Wnt1, Wnt3a, Wnt10b, Fzd9, ALP, and Bmp2. Also, SPEMF inhibited sclerostin after 5 days of treatment, and that inhibition was more significant with SL treatment. SL SPEMF increased expression of parathyroid hormone-related protein (PTHrP) but decreased expression of Sost gene, which encodes sclerostin. Together, the early osteogenic effect of SPEMF utilizes the canonical Wnt signaling pathway while the inhibitory effect of long-term SPEMF on sclerostin may be attributable to PTHrP upregulation. This study enhances our understanding of cellular mechanisms to support the previous finding and may provide new insight for clinical applications.


Assuntos
Glicoproteínas/metabolismo , Magnetoterapia/métodos , Células-Tronco Mesenquimais/fisiologia , Osteoblastos/fisiologia , Osteogênese/fisiologia , Via de Sinalização Wnt/fisiologia , Células 3T3 , Proteínas Adaptadoras de Transdução de Sinal , Fosfatase Alcalina/metabolismo , Animais , Western Blotting , Calcificação Fisiológica/fisiologia , Regulação para Baixo , Campos Eletromagnéticos , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Tempo
2.
J Appl Physiol (1985) ; 114(5): 647-55, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23239875

RESUMO

We tested the hypothesis that electromagnetic field (EMF) stimulation enhances chondrogenesis in human adipose-derived stem cells (ADSCs) in a chondrogenic microenvironment. A two-dimensional hyaluronan (HA)-coated well (2D-HA) and a three-dimensional pellet culture system (3D-pellet) were used as chondrogenic microenvironments. The ADSCs were cultured in 2D-HA or 3D-pellet, and then treated with clinical-use pulse electromagnetic field (PEMF) or the innovative single-pulse electromagnetic field (SPEMF) stimulation. The cytotoxicity, cell viability, and chondrogenic and osteogenic differentiations were analyzed after PEMF or SPEMF treatment. The modules of PEMF and SPEMF stimulations used in this study did not cause cytotoxicity or alter cell viability in ADSCs. Both PEMF and SPEMF enhanced the chondrogenic gene expression (SOX-9, collagen type II, and aggrecan) of ADSCs cultured in 2D-HA and 3D-pellet. The expressions of bone matrix genes (osteocalcin and collagen type I) of ADSCs were not changed after SPEMF treatment in 2D-HA and 3D-pellet; however, they were enhanced by PEMF treatment. Both PEMF and SPEMF increased the cartilaginous matrix (sulfated glycosaminoglycan) deposition of ADSCs. However, PEMF treatment also increased mineralization of ADSCs, but SPEMF treatment did not. Both PEMF and SPEMF enhanced chondrogenic differentiation of ADSCs cultured in a chondrogenic microenvironment. SPEMF treatment enhanced ADSC chondrogenesis, but not osteogenesis, when the cells were cultured in a chondrogenic microenvironment. However, PEMF enhanced both osteogenesis and chondrogenesis under the same conditions. Thus the combination of a chondrogenic microenvironment with SPEMF stimulation can promote chondrogenic differentiation of ADSCs and may be applicable to articular cartilage tissue engineering.


Assuntos
Tecido Adiposo/fisiologia , Condrogênese/fisiologia , Campos Eletromagnéticos , Células-Tronco/fisiologia , Tecido Adiposo/efeitos dos fármacos , Adulto , Cálcio/metabolismo , Técnicas de Cultura de Células/métodos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Células Cultivadas , Microambiente Celular/efeitos dos fármacos , Microambiente Celular/genética , Microambiente Celular/fisiologia , Condrogênese/efeitos dos fármacos , Condrogênese/genética , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Humanos , Ácido Hialurônico/farmacologia , Magnetoterapia/métodos , Masculino , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Osteogênese/fisiologia , RNA Mensageiro/genética , Células-Tronco/efeitos dos fármacos , Engenharia Tecidual/métodos , Adulto Jovem
3.
Osteoporos Int ; 16(12): 2039-45, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16170444

RESUMO

Green tea has been reported to possess antioxidant, antitumorigenic, and antibacterial qualities that regulate the endocrine system. Previous epidemiological studies found that the bone mineral density (BMD) of postmenopausal women with a habit of tea drinking was higher than that of women without habitual tea consumption. However, the effects of green tea catechins on osteogenic function have rarely been investigated. In this study, we tested (-)-epigallocatechin-3-gallate (EGCG), one of the green tea catechins, on cell proliferation, the mRNA expressions of relevant osteogenic markers, alkaline phosphatase (ALP) activity and mineralization. In a murine bone marrow mesenchymal stem cell line, D1, the mRNA expressions of core binding factors a1 (Cbfa1/Runx2), osterix, osteocalcin, ALP increased after 48 h of EGCG treatment. ALP activity was also significantly augmented upon EGCG treatment for 4 days, 7 days and 14 days. Furthermore, mineralizations assayed by Alizarin Red S and von Kossa stain were enhanced after EGCG treatment for 2-4 weeks in D1 cell cultures. However, a 24-h treatment of EGCG inhibited thymidine incorporation of D1 cells. These results demonstrated that long-term treatment of EGCG increases the expressions of osteogenic genes, elevates ALP activity and eventually stimulates mineralization, in spite of its inhibitory effect on proliferation. This finding suggests that the stimulatory effects of EGCG on osteogenesis of mesenchymal stem cells may be one of the mechanisms that allow tea drinkers to possess higher BMD.


Assuntos
Camellia sinensis/química , Catequina/análogos & derivados , Osteogênese/efeitos dos fármacos , Extratos Vegetais/química , Fosfatase Alcalina/metabolismo , Animais , Antioxidantes/farmacologia , Biomarcadores/análise , Células da Medula Óssea/efeitos dos fármacos , Calcificação Fisiológica/fisiologia , Catequina/farmacologia , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , RNA Mensageiro/análise , Timidina/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA