Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Plant Microbe Interact ; 36(2): 119-130, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36515967

RESUMO

Most bacteria use type II fatty acid synthesis (FAS) systems for synthesizing fatty acids, of which the conserved FabA-FabB pathway is considered to be crucial for unsaturated fatty acid (UFA) synthesis in gram-negative bacteria. Xanthomonas campestris pv. campestris, the phytopathogen of black rot disease in crucifers, produces higher quantities of UFAs under low-temperature conditions for increasing membrane fluidity. The fabA and fabB genes were identified in the X. campestris pv. campestris genome by BLAST analysis; however, the growth of the X. campestris pv. campestris fabA and fabB deletion mutants was comparable to that of the wild-type strain in nutrient and minimal media. The X. campestris pv. campestris ΔfabA and ΔfabB strains produced large quantities of UFAs and, altogether, these results indicated that the FabA-FabB pathway is not essential for growth or UFA synthesis in X. campestris pv. campestris. We also observed that the expression of X. campestris pv. campestris fabA and fabB restored the growth of the temperature-sensitive Escherichia coli fabA and fabB mutants CL104 and CY242, respectively, under non-permissive conditions. The in-vitro assays demonstrated that the FabA and FabB proteins of X. campestris pv. campestris catalyzed FAS. Our study also demonstrated that the production of diffusible signal factor family signals that mediate quorum sensing was higher in the X. campestris pv. campestris ΔfabA and ΔfabB strains and greatly reduced in the complementary strains, which exhibited reduced swimming motility and attenuated host-plant pathogenicity. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Xanthomonas campestris , Xanthomonas campestris/metabolismo , Ácidos Graxos/metabolismo , Escherichia coli/genética , Percepção de Quorum , Ácidos Graxos Insaturados/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
BMC Complement Med Ther ; 20(1): 113, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32295580

RESUMO

BACKGROUND: To investigate the protective effect of Ixeris Sonchifolia (Bae.) Hance (ISH) extract on herpes simplex virus keratitis (HSK) in mice. METHODS: A mouse model of HSK was established by inoculating 60 mice (60 right eyes) with herpes simplex virus type 1 (HSV-1) by corneal scratch. The other 15 mice as blank control only received corneal scratch but without HSV-1. From the 2nd day after the successful modeling, the experimental group was fed with ISH total flavonoids (50, 100 and 200 mg/kg) orally, twice a day for 14 days. The model group and control group were given the same amount of normal saline. The pathological changes of cornea were observed once a day by slit lamp microscopy combined with fluorescein staining. The corneal histopathological examination, the survival status and the serum levels of interleukin-2 (IL-2), IL-4 and interferon-gama (INF-γ) were performed at the end of the experiment. RESULTS: The result showed that ISH could significantly improve the corneal lesion degree, increase mice survival rate, and markedly increase the levels of IL-2 and INF-γ, reduce the levels of IL-4 in serum of mice. CONCLUSIONS: ISH could increase the anti-virus ability, promote the healing of corneal inflammation and alleviate the pathological damage of cornea, which suggested that ISH has a potential and valuable therapeutic effect on the HSK.


Assuntos
Asteraceae/química , Flavonoides/farmacologia , Ceratite Herpética/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , China , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos BALB C
3.
Biochem Biophys Res Commun ; 508(3): 959-964, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30545636

RESUMO

Gut-derived 5-hydroxytryptamine (5-HT) is well known for its role in mediating colonic motility function. However, it is not very clear whether brain-derived 5-HT is involved in the regulation of colonic motility. In this study, we used central 5-HT knockout (KO) mice to investigate whether brain-derived 5-HT mediates colonic motility, and if so, whether it involves oxytocin (OT) production in the hypothalamus and OT receptor in the colon. Colon transit time was prolonged in KO mice. The OT levels in the hypothalamus and serum were decreased significantly in the KO mice compared to wild-type (WT) controls. OT increased colonic smooth muscle contraction in both KO and WT mice, and the effects were blocked by OT receptor antagonist and tetrodotoxin but not by hexamethonium or atropine. Importantly, the OT-induced colonic smooth muscle contraction was decreased significantly in the KO mice relative to WT. The OT receptor expression of colon was detected in colonic myenteric plexus of mice. Central 5-HT is involved in the modulation of colonic motility which may modulate through its regulation of OT synthesis in the hypothalamus. Our results reveal a central 5-HT - hypothalamus OT - colonic OT receptor axis, providing a new target for the treatment of brain-gut dysfunction.


Assuntos
Colo/fisiologia , Motilidade Gastrointestinal , Hipotálamo/metabolismo , Ocitocina/metabolismo , Receptores de Ocitocina/metabolismo , Serotonina/fisiologia , Animais , Colo/metabolismo , Feminino , Masculino , Camundongos , Camundongos Knockout , Contração Muscular , Ocitocina/sangue , Hipófise/metabolismo , Triptofano Hidroxilase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA