RESUMO
Transient electronics is an emerging technology that enables unique functional transformation or the physical disappearance of electronic devices, and is attracting increasing attention for potential applications in data secured hardware as an ultimate solution against data breaches. Developing smart triggered degradation modalities of silicon (Si) remain the key challenge to achieve advanced non-recoverable on-demand transient electronics. Here, we present a novel electrochemically triggered transience mechanism of Si by lithiation, allowing complete and controllable destruction of Si devices. The depth and microstructure of the lithiation-affected zone over time is investigated in detail and the results suggest a few hours of lithiation is sufficient to create microcracks and significantly promote lithium penetration. Finite element models are proposed to confirm the mechanism. Electrochemically triggered degradation of thin film Si ribbons and Si integrated circuit chips with metal-oxide-semiconductor field-effect transistors from a commercial 0.35 micrometer complementary metal-oxide-semiconductor technology node is performed to demonstrate the potential applications for commercial electronics. This work opens new opportunities for versatile triggered transience of Si-based devices for critical secured information systems and green consumer electronics.
RESUMO
Mitogen-activated protein kinase (MAPK) and leucine-rich repeat receptor-like kinase (LRR-RLK) signaling pathways have been shown to regulate diverse aspects of plant growth and development. In Arabidopsis, proper anther development relies on intercellular communication to coordinate cell proliferation and differentiation. Two closely related genes encoding MAPKs, MPK3 and MPK6, function redundantly in regulating stomatal patterning. Although the mpk6 mutant has reduced fertility, the function of MPK3 and MPK6 in anther development has not been characterized. Similarly, the ERECTA (ER), ERECTA-LIKE1 (ERL1) and ERL2 genes encoding LRR-RLKs function together to direct stomatal cell fate specification and the er-105 erl1-2 erl2-1 triple mutant is sterile. Because the mpk3 mpk6 double null mutant is embryo lethal, anther development was characterized in the viable mpk3/+ mpk6/- and er-105 erl1-2 erl2-1 mutants. We found that both mutant anthers usually fail to form one or more of the four anther lobes, with the er-105 erl1-2 erl2-1 triple mutant exhibiting more severe phenotypes than those of the mpk3/+ mpk6/- mutant. The somatic cell layers of the differentiated mutant lobes appeared larger and more disorganized than that of wild-type. In addition, the er-105 erl1-2 erl2-1 triple mutant has a reduced number of stamens, the majority of which possess completely undifferentiated or under-differentiated anthers. Furthermore, sometimes, the mpk3/+ mpk6/- mutant anthers do not dehisce, and the er-105 erl1-2 erl2-1 anthers were not observed to dehisce. Therefore, our results indicate that both ER/ERL1/ERL2 and MPK3/MPK6 play important roles in normal anther lobe formation and anther cell differentiation. The close functional relationship between these genes in other developmental processes and the similarities in anther developmental phenotypes of the two types of mutants reported here further suggest the possibility that these genes might also function in the same pathway to regulate anther cell division and differentiation.