Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 27(35): 44482-44493, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32772284

RESUMO

Watershed models are cost-effective and powerful tools for evaluating and controlling non-point source pollution (NPSP), while the reliability of watershed models in a management context depends largely on inherent uncertainties in model predictions. The objective of this study is to present the use of multi-model ensemble applied to streamflow, total nitrogen (TN), and total phosphorus (TP) simulation and quantify the uncertainty resulting from model structure. In this study, three watershed models, which have different structures in simulating NPSP, were selected to conduct watershed monthly streamflow, TN load, and TP load ensemble simulation and 90% credible intervals based on Bayesian model averaging (BMA) method. The result using the observed data of the Yixunhe watershed revealed that the coefficient of determination and Nash-Sutcliffe coefficient of the BMA model simulate streamflow, TN load, and TP load were better than that of the single model. The higher the efficiency of a single model is, the greater the weight during the BMA ensemble simulation is. The 90% credible interval of BMA has a high coverage of measured values in this study. This indicates that the BMA method can not only provide simulation with better precision through ensemble simulation but also provide quantitative evaluation of the model structure through interval, which could offer rich information of the NPSP simulation and management.


Assuntos
Poluição Difusa , Poluentes Químicos da Água , Teorema de Bayes , China , Monitoramento Ambiental , Modelos Teóricos , Nitrogênio/análise , Fósforo/análise , Reprodutibilidade dos Testes , Rios , Incerteza , Poluentes Químicos da Água/análise
2.
Environ Sci Pollut Res Int ; 26(10): 10363-10373, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30761497

RESUMO

It is the key point to reveal the effect of irrigation water and fertilization conditions on the agriculture non-point pollution in the paddy field. In this study, the estimation model of agricultural non-point source pollution loads at field scale was established on the basis of agricultural drainage irrigation model and combined with pollutant concentration predication model. Based on the estimation model of agricultural non-point source pollution in the field and experimental data, the load of agricultural non-point source pollution in different irrigate amount and fertilization schedule in paddy field was calculated. The results showed that the variation of field drainage varies greatly under different irrigation conditions, and there is an "inflection point" between the irrigation water amount and field drainage amount. The non-point pollution load increased with the increase of irrigation water and showed a significant power correlation. Under the different irrigation condition, the increase amplitude of non-point pollution load with the increase of irrigation water was different. When the irrigation water is smaller, the non-point pollution load increase relatively less, and when the irrigation water increased to inflection point, the non-point pollution load will increase considerably. In addition, there was a positive correlation between the fertilization and non-point pollution load. The non-point pollution load had obvious difference in different fertilization schedule even with same fertilization level, in which the fertilizer pollution load increased the most in the period of turning green to tillering. The results provide some basis for the field control and management of agricultural non-point source pollution.


Assuntos
Irrigação Agrícola/métodos , Poluição Difusa/análise , Oryza/crescimento & desenvolvimento , Agricultura/métodos , Poluição Ambiental , Fertilizantes , Nitrogênio/análise , Fósforo , Água , Movimentos da Água , Poluentes Químicos da Água/análise
3.
Science ; 350(6258): 313-6, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26472906

RESUMO

Human skin relies on cutaneous receptors that output digital signals for tactile sensing in which the intensity of stimulation is converted to a series of voltage pulses. We present a power-efficient skin-inspired mechanoreceptor with a flexible organic transistor circuit that transduces pressure into digital frequency signals directly. The output frequency ranges between 0 and 200 hertz, with a sublinear response to increasing force stimuli that mimics slow-adapting skin mechanoreceptors. The output of the sensors was further used to stimulate optogenetically engineered mouse somatosensory neurons of mouse cortex in vitro, achieving stimulated pulses in accordance with pressure levels. This work represents a step toward the design and use of large-area organic electronic skins with neural-integrated touch feedback for replacement limbs.


Assuntos
Mecanorreceptores , Próteses Neurais , Pele/inervação , Tato , Estimulação Elétrica Nervosa Transcutânea/métodos , Animais , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Mãos/anatomia & histologia , Mãos/inervação , Mãos/fisiologia , Humanos , Técnicas In Vitro , Camundongos , Optogenética , Pressão , Transistores Eletrônicos
4.
Water Sci Technol ; 69(12): 2533-40, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24960018

RESUMO

Nutrient discharge during storm events is a critical pathway for nutrient export in semi-arid catchments. We investigated nutrient dynamics during three summer storms characterized by different rainfall magnitude in 2012 in a semi-arid catchment of northern China. The results showed that, in response to storm events, nutrient dynamics displayed big variation in temporal trends of nutrient concentration and in nutrient concentration-flow discharge relationships. Nutrient concentrations had broader fluctuations during an extreme storm than during lesser storms, whereas the concentration ranges of the a moderate storm were no broader than those of a smaller one. The different concentration fluctuations were caused by storm magnitude and intensity coupled with the antecedent rainfall amount and cumulative nutrients. Correlation coefficients between nutrient concentrations and flow discharge varied from positive to negative for the three different events. There were no consistent hysteresis effects for the three different events, and no hysteresis effects were observed for any of the variables during the moderate storm (E2). Our findings provide useful information for better understanding nutrient loss mechanisms during storm events in semi-arid areas of a monsoon climate region.


Assuntos
Nitrogênio/química , Fósforo/química , Chuva , Rios/química , Movimentos da Água , China , Fatores de Tempo , Eliminação de Resíduos Líquidos , Qualidade da Água
5.
Proc Natl Acad Sci U S A ; 111(13): 4776-81, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24639537

RESUMO

Tuning the threshold voltage of a transistor is crucial for realizing robust digital circuits. For silicon transistors, the threshold voltage can be accurately controlled by doping. However, it remains challenging to tune the threshold voltage of single-wall nanotube (SWNT) thin-film transistors. Here, we report a facile method to controllably n-dope SWNTs using 1H-benzoimidazole derivatives processed via either solution coating or vacuum deposition. The threshold voltages of our polythiophene-sorted SWNT thin-film transistors can be tuned accurately and continuously over a wide range. Photoelectron spectroscopy measurements confirmed that the SWNT Fermi level shifted to the conduction band edge with increasing doping concentration. Using this doping approach, we proceeded to fabricate SWNT complementary inverters by inkjet printing of the dopants. We observed an unprecedented noise margin of 28 V at V(DD) = 80 V (70% of 1/2V(DD)) and a gain of 85. Additionally, robust SWNT complementary metal-oxide-semiconductor inverter (noise margin 72% of 1/2VDD) and logic gates with rail-to-rail output voltage swing and subnanowatt power consumption were fabricated onto a highly flexible substrate.

6.
Environ Sci Pollut Res Int ; 21(10): 6506-15, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24464078

RESUMO

Quantifying source apportionments of nutrient load and their variations among seasons and hydrological years can provide useful information for watershed nutrient load reduction programs. There are large seasonal and inter-annual variations in nutrient loads and their sources in semi-arid watersheds that have a monsoon climate. The Generalized Watershed Loading Function model was used to simulate monthly nutrient loads from 2004 to 2011 in the Liu River watershed, Northern China. Model results were used to investigate nutrient load contributions from different sources, temporal variations of source apportionments and the differences in the behavior of total nitrogen (TN) and total phosphorus (TP). Examination of source apportionments for different seasons showed that point sources were the main source of TN and TP in the non-flood season, whereas contributions from diffuse sources, such as rural runoff, soil erosion, and urban areas, were much higher in the flood season. Furthermore, results for three typical hydrological years showed that the contribution ratios of nutrient loads from point sources increased as streamflow decreased, while contribution ratios from rural runoff and urban area increased as streamflow increased. Further, there were significant differences between TN and TP sources on different time scales. Our findings suggest that priority actions and management measures should be changed for different time periods and hydrological conditions, and that different strategies should be used to reduce loads of nitrogen and phosphorus effectively.


Assuntos
Monitoramento Ambiental/métodos , Modelos Químicos , Nitrogênio/análise , Fósforo/análise , Rios/química , Poluentes Químicos da Água/análise , China , Clima , Hidrologia , Modelos Teóricos , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA