Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
CNS Neurosci Ther ; 27(4): 484-496, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33459523

RESUMO

AIMS: Type 2 diabetes mellitus (T2DM) can lead to brain dysfunction and a series of neurological complications. Previous research demonstrated that a novel palmitic acid (5-PAHSA) exerts effect on glucose tolerance and chronic inflammation. Autophagy was important in diabetic-related neurodegeneration. The aim of the present study was to investigate whether 5-PAHSA has specific therapeutic effects on neurological dysfunction in diabetics, particularly with regard to autophagy. METHODS: 5-PAHSA was successfully synthesized according to a previously described protocol. We then carried out a series of in vitro and in vivo experiments using PC12 cells under diabetic conditions, and DB/DB mice, respectively. PC12 cells were treated with 5-PAHSA for 24 h, while mice were administered with 5-PAHSA for 30 days. At the end of each experiment, we analyzed glucolipid metabolism, autophagy, apoptosis, oxidative stress, cognition, and a range of inflammatory factors. RESULTS: Although there was no significant improvement in glucose metabolism in mice administered with 5-PAHSA, ox-LDL decreased significantly following the administration of 5-PAHSA in serum of DB/DB mice (p < 0.0001). We also found that the phosphorylation of m-TOR and ULK-1 was suppressed in both PC12 cells and DB/DB mice following the administration of 5-PAHSA (p < 0.05 and p < 0.01), although increased levels of autophagy were only observed in vitro (p < 0.05). Following the administration of 5-PAHSA, the concentration of ROS decreased in PC12 cells and the levels of CRP increased in high-dose group of 5-PAHSA (p < 0.01). There were no significant changes in terms of apoptosis, other inflammatory factors, or cognition in DB/DB mice following the administration of 5-PAHSA. CONCLUSION: We found that 5-PAHSA can enhance autophagy in PC12 cells under diabetic conditions. Our data demonstrated that 5-PAHSA inhibits phosphorylation of the m-TOR-ULK1 pathway and suppressed oxidative stress in PC12 cells, and exerted influence on lipid metabolism in DB/DB mice.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/antagonistas & inibidores , Autofagia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Ácido Palmítico/farmacologia , Ácidos Esteáricos/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Autofagia/fisiologia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/uso terapêutico , Células PC12 , Ácido Palmítico/uso terapêutico , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Ácidos Esteáricos/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-22436821

RESUMO

In present study, the performance and separation characteristics of nine macroporous resins for the enrichment and purification of gardenia yellow from Gardenia jasminoides var. radicans Makino have been evaluated. The adsorption and desorption properties of crude gardenia yellow solution on macroporous resins including HPD722, HPD100, HPD100A, HPD400, HPD400A, D101, AB-8, XAD-16, and NKA-9 have been compared. Then, HPD722 was chosen to purify gardenia yellow because of its strong adsorption and desorption abilities as well as high selectivity. Column packed with HPD722 resin was used to perform dynamic adsorption and desorption tests to optimize the separation process of gardenia yellow. The optimal conditions were as follows: The crude gardenia yellow solution with concentration of 15 mg/mL was loaded in column packed with HPD722 resin at the flow rate of 1.0 mL/min, and the adsorbate-laden column was washed with 800 mL water, 600 mL 15% ethanol water solution respectively at the speed of 2.5 mL/min, then desorbed with 200 mL 80% ethanol water solution at the speed of 3.5 mL/min. The colority of the product obtained were up to 300. The method developed in this study provides a new approach for scale-up separation and purification of gardenia yellow from G. jasminoides var. radicans Makino.


Assuntos
Cromatografia de Afinidade/métodos , Medicamentos de Ervas Chinesas/química , Gardenia/química , Extratos Vegetais/isolamento & purificação , Adsorção , Carotenoides/análise , Carotenoides/química , Cromatografia de Afinidade/instrumentação , Cromatografia Líquida de Alta Pressão , Etanol , Iridoides/análise , Iridoides/química , Reagentes de Laboratório , Espectrofotometria Ultravioleta , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA