Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemosphere ; 353: 141586, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452980

RESUMO

Heterogeneous activation of peroxomonosulfate (PMS) has been extensively studied for the degradation of antibiotics. The cobalt ferrite spinel exhibits good activity in the PMS activation, but suffers from the disadvantage of low PMS utilization efficiency. Herein, the nanocomposites including FeS, CoS2, CoFe2O4 and Fe2O3 were synthesized by hydrothermal method and used for the first time to activate PMS for the removal of sulfamethoxazole (SMX). The nanocomposites showed superior catalytic activity in which the SMX could be completely removed at 40 min, 0.1 g L-1 nanocomposites and 0.4 mM PMS with the first order kinetic constant of 0.2739 min-1. The PMS utilization efficiency was increased by 29.4% compared to CoFe2O4. Both radicals and non-radicals contributed to the SMX degradation in which high-valent metal oxo dominated. The mechanism analysis indicated that sulfur modification, on one hand, enhanced the adsorption of nanocomposites for PMS, and promoted the redox cycles of Fe2+/Fe3+ and Co2+/Co3+ on the other hand. This study provides new way to enhance the catalytic activity and PMS utilization efficiency of spinel cobalt ferrite.


Assuntos
Óxido de Alumínio , Cobalto , Compostos Férricos , Óxido de Magnésio , Nanocompostos , Sulfametoxazol , Peróxidos
2.
Chemosphere ; 354: 141730, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492682

RESUMO

In this study, Fe0@Fe3O4 was synthesized and used to remove U(VI) from groundwater. Different experimental conditions and cycling experiments were used to investigate the performance of Fe0@Fe3O4 in the U(VI) removal, and the XRD, TEM, XPS and XANES techniques were employed to characterize the Fe0@Fe3O4. The results showed that the U(VI) removal efficiency of Fe0@Fe3O4 was 48.5 mg/g that was higher than the sum of removal efficiency of Fe0 and Fe3O4. The uranium on the surface of Fe0@Fe3O4 mainly existed as U(IV), followed by U(VI) and U(V). The Fe0 content decreased after reaction, while the Fe3O4 content increased. Based on the results of experiments and characterization, the enhanced removal efficiency of Fe0@Fe3O4 was attributed to the synergistic effect of Fe0 and Fe3O4 in which Fe3O4 accelerated the Fe0 corrosion that promoted the progressively formation of Fe(II) that promoted the reduction of adsorbed U(VI) to U(IV) and incorporated U(VI) to U(V). The performance of Fe0@Fe3O4 at near-neutrality condition was better than at acidic and alkalic conditions. The chloride ions, sulfate ions and nitrate ions showed minor effect on the Fe0@Fe3O4 performance, while carbonate ions exhibited significant inhibition. The metal cations showed different effect on the Fe0@Fe3O4 performance. The removal efficiency of Fe0@Fe3O4 decreased with the number of cycling experiment. Ionizing radiation could regenerate the used Fe0@Fe3O4. This study provides insight into the U(VI) removal by Fe0@Fe3O4 in aqueous solution.


Assuntos
Ferro , Urânio , Água , Cloretos , Halogênios , Adsorção
3.
Chemosphere ; 352: 141398, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342147

RESUMO

Hydroxyapatite has a high affinity to uranium, and element doping can effectively improve its adsorption performance. In this study, magnesia-silica-fluoride co-doped hydroxyapatite composite was prepared by hydrothermal method, and the effect of single-phase and multiphase doping on the structure and properties of the composites was investigated. The results showed that the specific surface area of Mg-Si-F-nHA composites increased by 63.01% after doping. Comparing with nHA, U(VI) adsorption capacity of Si-nHA, Mg-Si-nHA and Mg-Si-F-nHA composites increased by 13.01%, 17.39% and 22.03%, respectively. The adsorption capacity of Mg-Si-F-nHA composite reached 1286.76 mg/g. Adsorbent dosage and pH obviously affected U(VI) adsorption, and the experimental data can be fitted well by PSO and Sips models. The physicochemical characterization before and after adsorption suggested that complexation, ion exchange and precipitation participated in uranium adsorption. In conclusion, different elements doping can effectively improve the uranium adsorption properties of hydroxyapatite composites.


Assuntos
Fluoretos , Urânio , Dióxido de Silício , Óxido de Magnésio , Urânio/análise , Adsorção , Durapatita/química , Concentração de Íons de Hidrogênio , Cinética
4.
ACS Appl Mater Interfaces ; 16(9): 11251-11262, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38394459

RESUMO

Nanozyme has been proven to be an attractive and promising candidate to alleviate the current pressing medical problems. However, the unknown clinical safety and limited function beyond the catalysis of the most reported nanozymes cannot promise an ideal therapeutic outcome in further clinical application. Herein, we find that ferric maltol (FM), a clinically approved iron supplement synthesized through a facile scalable method, exhibits excellent peroxidase-like activity than natural horseradish peroxidase-like (HRP) and commonly reported Fe-based nanozymes, and also shows high antibacterial performance for methicillin-resistant Staphylococcus aureus (MRSA) elimination (100%) and wound disinfection. In addition, with added effects inherited from contained maltol, FM can accelerate skin barrier recovery. Therefore, the exploration of FM as a safe and desired nanozyme provides a timely alternative to current antibiotic therapy against drug-resistant bacteria.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Pironas , Desinfecção , Compostos Férricos/farmacologia , Peroxidase do Rábano Silvestre , Catálise , Antibacterianos/farmacologia , Peróxido de Hidrogênio , Peroxidase
5.
Chemosphere ; 351: 141204, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237778

RESUMO

Priestia sp. WW1 was isolated from a uranium-contaminated mining soil and identified. The uranium removal characteristics and mechanism of Priestia sp. WW1 were investigated. The results showed that the removal efficiency of uranium decreased with the increase of initial uranium concentration. When the uranium initial concentration was 5 mg/L, the uranium removal efficiency achieved 92.1%. The increase of temperature could promote the uranium removal. Carbon source could affect the removal rate of uranium, which was the fastest when the methanol was used as carbon source. The solution pH had significant effect on the uranium removal efficiency, which reached the maximum under solution pH 5.0. The experimental results and FTIR as well as XPS demonstrated that Priestia sp. WW1 could remove uranium via both adsorption and reduction. The common chloride ions, sulfate ions, Mn(II) and Cu(II) enhanced the uranium removal, while Fe(III) depressed the uranium removal. The Priestia sp. WW1 could effectively remove the uranium in the actual mining groundwater, and the increase of initial biomass could improve the removal efficiency of uranium in the actual mining groundwater. This study provided a promising bacterium for uranium remediation in the groundwater.


Assuntos
Bacillaceae , Água Subterrânea , Urânio , Urânio/análise , Compostos Férricos , Carbono , Íons , Solo , Adsorção
6.
Int J Biol Macromol ; 232: 123340, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36682659

RESUMO

The in situ identification of superbugs with the simultaneous killing of it is key to preventing human health. Here, a one-stop identification and killing platform for near-infrared (NIR) triggering was designed and constructed using lignosulfonate (LS), cationic guar gum (CG) and Ag2O NPs hydrogels (LS/CG/Ag2O). The hydrogel network is used as a fixed matrix for Ag2O NPs and a nano reactor, meanwhile 3,3', 5,5'-tetramethylbenzidine (TMB) as a single probe sensor array for bacterial identification. In contrast to conventional methods, hybrid hydrogels have catalytic qualities through which TMB be catalyzed to generate oxidized TMB (oxTMB). The drug resistance of the same strain can be distinguished based on the different inhibition abilities of drug-resistant superbacteria in TMB and hydrogel reactions. Then, the employing of oxTMB photothermal characteristics, it can be efficiently killed in real time while being driven by a near-infrared laser. The proposed one-stop hydrogel platform paves a way for the rapid identification and killing of drug-resistant superbacteria.


Assuntos
Antibacterianos , Hidrogéis , Humanos , Hidrogéis/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Fototerapia
7.
Food Res Int ; 163: 112293, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36596197

RESUMO

Nature-derived chemicals have recently gained increased attention to settle down the challenges in the food industry. Quercetin has long been used as a natural medicine but its photoactivity has been neglected. In this work, by combining photodynamic bacteria inactivation (PDI) with an edible coating (Pectin/Quercetin) derived from FDA-approved chemicals, extend shelf-life and protected commercial quality of fresh-cut apples were achieved. Firstly, the potential photoactivated antibacterial performance of Quercetin (a natural plant flavonoid) was clarified with the treatment of a simulated sunlight lamp, realizing antibacterial efficacy of 100 % towards S. aureus (50 min) and L. monocytogenes (80 min) with light treatment. To develop safe and effective preservation of fresh-cut apples, Pectin/Quercetin edible coatings with 100 µmol/L quercetin were adopted. The results showed that the prepared edible coatings form a protective barrier over the surface of apples, effectively resisting bacterial infection and extending shelf life to 10 days while maintaining good commercial quality (including preferable color, keeping 100 % hardness, 80 % sugar content and 17.3 % weightlessness rate). Therefore, the prepared light-driven Pectin/Quercetin in this work has the potential to develop as fresh-cut fruit preservation technology.


Assuntos
Filmes Comestíveis , Malus , Malus/microbiologia , Conservação de Alimentos/métodos , Quercetina/farmacologia , Staphylococcus aureus , Compostos Fitoquímicos , Pectinas , Antibacterianos
8.
Food Chem ; 401: 134117, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36096001

RESUMO

Although nanocomposite films had shown excellent potential in antibacterial food packaging, their potential harmful impact limits their further application in reality. Therefore, exploring a Generally Recognized As Safe (GRAS) nanomaterial that has antibacterial ability is the pioneer for the fabrication of a real edible nanocomposite-based antibacterial packaging film. Herein, for the first time by using the natural nanostructure extracted from cuttlefish ink, an edible antibacterial food packaging with high safety were constructed. The natural melanin nanoparticles (NMPs) in cuttlefish ink have good photothermal conversion ability. As such, by incorporating with natural pectin (PC) film and with near infrared (NIR) irradiation triggering, the results show that PC/NMPs films perform high-efficiency and short-term bactericidal activity against foodborne pathogenic bacteria, including thermotolerant Listeria monocytogenes. The sterilization rate could reach more than 90 % within only 5 min. Also, this nanocomposite film showed better mechanical properties, thermal stability and barrier properties than the neat pectin film. Antibacterial test on food sample also proved the good antibacterial ability of the PC/NMPs films. Therefore, exploring GRAS natural functional nanocomposite film is expected to be the effective way to promote edible nano-antibacterial packaging.


Assuntos
Filmes Comestíveis , Nanopartículas , Embalagem de Alimentos/métodos , Melaninas , Antibacterianos/farmacologia , Antibacterianos/química , Pectinas/farmacologia , Pectinas/química
9.
J Hazard Mater ; 439: 129533, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35850065

RESUMO

Photocatalytic disinfection is a promising way to combat bacterial pollution in the water environment. Inefficient use of visible light and undirected diffusion of reactive oxygen species (ROS) reduce photocatalytic disinfection efficiency. Herein, inspired by the concentrating effect of convex lens, photocatalysts with particular "nano-magnifying glass effect" (TCNMgNOs) were designed by embedding magnesium oxide with "converge effect" into the tailored hierarchical triple-shell porous g-C3N4 with "one light multi-purpose effect" to boost the visible-light utilization. Meanwhile, the ATPase hydrolysis homeostasis of bacteria was destroyed by TCNMgNOs to achieve the targeted movement of ROS. The results confirmed that the photocatalytic sterilization efficiency of TCNMgNOs was amplified by 30 times over g-C3N4, which was achieved by focusing visible light, multiple reflecting visible light and light transmission within the porous thin shells as well as the "addictive sterilization mechanism". The sterilization efficiency still maintains 98.8 % (15 min) after 6 rounds recycling and reusing in practical river water disinfection. A novel pathway for fighting against microbial contaminants in natural water was explored.


Assuntos
Desinfecção , Óxido de Magnésio , Bactérias , Catálise , Desinfecção/métodos , Grafite , Luz , Nitrilas/farmacologia , Compostos de Nitrogênio , Cebolas , Espécies Reativas de Oxigênio/farmacologia , Rios , Água/farmacologia
10.
Chemosphere ; 296: 134054, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35202664

RESUMO

With the advancement of water ecological protection and water control standard, it is the general trend to upgrade the wastewater treatment plants (WWTPs). The simultaneous removal of nitrogen and phosphorus is the key to improve the water quality of secondary effluent of WWTPs to prevent the eutrophication. Therefore, it is urgent to develop the applicable technologies for simultaneous biological removal of nitrogen and phosphorus from secondary effluent. In this review, the composition of secondary effluent from municipal WWTPs were briefly introduced firstly, then the three main treatment processes for simultaneous nitrogen and phosphorus removal, i.e., the enhanced denitrifying phosphorus removal filter, the pyrite-based autotrophic denitrification and the microalgae biological treatment system were summarized, their performances and mechanisms were analyzed. The influencing factors and microbial community structure were discussed. The advanced removal of nitrogen and phosphorus by different technologies were also compared and summarized in terms of performance, operational characteristics, disadvantage and cost. Finally, the challenges and future prospects of simultaneous removal of nitrogen and phosphorus technologies for secondary effluent were proposed. This review will deepen to understand the principles and applications of the advanced removal of nitrogen and phosphorus and provide some valuable information for upgrading the treatment process of WWTPs.


Assuntos
Fósforo , Purificação da Água , Reatores Biológicos , Desnitrificação , Nitrogênio , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias/química
11.
J Hazard Mater ; 424(Pt A): 127281, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34583158

RESUMO

Photocatalysis has been regarded as a promising inactivation technology targeting to reduce drug-resistant bacteria contamination, but developing efficient photocatalysts with broad visible light harvesting capability is still a challenge. Here we report a MOFs-derived BPQDs/Cu2O/N-doped hollow porous carbon (BP/CNC) with indirect Z-scheme heterojunctions (BPQDs/Cu2O), which can inactivate 99.99999% Methicillin-resistant Staphylococcus aureus (MRSA) at a concentration of only 10 mg/L. Combining photoelectrochemical techniques and electrochemical measurements, the efficient inactivation process was attributed to the synergistic effect of enhanced light utilization and effective suppression of photogenerated carrier recombination. The mechanism of gradually damaged cell membrane for MRSA was studied by employing scanning electron microscopy (SEM), fluorescence staining and coagulase titer test to further decipher the changes in bacterial cells. We propose that reactive oxygen species (ROS) destroys the cell wall membrane and causes the leakage of cell contents, eventually leading to death. In addition, a series of in vitro and in vivo toxicity tests were conducted to evaluate the biocompatibility of the antibacterial system and its potential use in practice. This strategy of BPQDs/Cu2O indirect heterojunction fabrication can spatially inhibit the recombination of photogenerated carriers, expands the light absorption range, providing a feasible method for disinfecting microbial contaminated water.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Catálise , Desinfecção , Nanopartículas/toxicidade , Fósforo , Água
12.
Bioresour Technol ; 321: 124435, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33257168

RESUMO

Hydrogen production from sewage sludge was studied in the presence of Fe2+. The results showed that the highest cumulative hydrogen production of 26 mL/100 mL was achieved with 600 mg/L Fe2+ supplementation, which was 2 times of the control test. In depth analysis of organics in liquid phase revealed that Fe2+ addition promoted sludge disintegration and protein degradation during fermentation process. Functions prediction by PICRUSt analysis indicated the effect of Fe2+ on microbial metabolism and functional genes expression. The results showed that the expression of hydrogen-producing functions, like ferredoxin hydrogenase and formate dehydrogenase was activated by Fe2+ supplementation, while the hydrogen-consuming metabolism, like methane metabolism and homoacetogenic metabolism was inhibited. Furthermore, Fe2+ addition could stimulate organics utilization. This study explored the effect of Fe2+ on functional genes abundance, revealing the mechanisms of enhanced hydrogen production by Fe2+ from the perspective of microbial metabolism.


Assuntos
Hidrogênio , Esgotos , Fermentação , Ferro , Redes e Vias Metabólicas
13.
Food Chem ; 338: 127749, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32805690

RESUMO

Lycium barbarum L. polysaccharides (LBPs) with outstanding biological activities are of increasing interest. Traditional purification approaches are time-consuming and often involve toxic solvents that destroy the functionality and structure of polysaccharides. Herein, we report a sustainable and nondestructive strategy for purifying LBPs using graphene-based nano-decoloration. The amination of graphene oxide (GO) enables the resulted aminated reduced GO (NH2-rGO) with abundant sp2-hybridized carbon domains, displaying high adsorption capacity toward pigments in crude polysaccharides. As such, within 5 min, NH2-rGO can highly effectively and fast to decolor LBPs, with a high decoloration ratio of 98.72% and a high polysaccharides retention ratio of 95.62%. Importantly, compared with traditional decoloration methods, NH2-rGO is nondestructive toward LBPs and has good reusability. Moreover, it exhibited widespread-use decoloration performance to decolor several common plant species. Overall, our proposed nano-decoloration approach is a general-purpose, sustainable, and nondestructive method to purify LBPs.


Assuntos
Medicamentos de Ervas Chinesas/química , Grafite/química , Lycium/química , Cor , Nanoestruturas/química
14.
Comput Math Methods Med ; 2021: 7667707, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003325

RESUMO

Zhuling Jisheng decoction is employed for the treatment of bladder urothelial cancer in clinical practice of traditional Chinese medicine. However, there are few studies on its precise mechanism. For the antibladder cancer action of Zhuling Jisheng decoction, a network pharmacological technique was used to design a component/target/pathway molecular regulatory network. The TCMSP dataset was used to identify the chemical makeup of Zhuling Jisheng decoction, which was then analyzed and assessed for oral bioavailability and pharmacological similarity. The chemical composition of Zhuling Jisheng decoction was identified through the TCMSP database, and it was evaluated and screened based on oral bioavailability and drug similarity. The GEO database was searched for genes associated with urothelial bladder carcinoma, and gene targets associated with bladder urothelial cancer resistance were chosen by comparison. The function and linked pathways of the target genes were examined and screened using annotation, visualization, and a comprehensive discovery database. The impact of Zhuling Jisheng decoction on urothelial bladder cancer was studied using Cytoscape software to create a component/target/pathway network. Finally, 69 and 55 target genes were discovered for noninvasive bladder urothelial cancer and invasive bladder urothelial cancer, respectively. In noninvasive urothelial cancer, 118 pathways were highly enriched, including the TNF signaling pathway and the IL-17 signaling route. 103 pathways were highly enriched in invasive urothelial cancer, including the p53 signaling route, bladder cancer route, and calcium signaling route. There were 18 and 15 drug targets associated with noninvasive and invasive bladder urothelial carcinoma prognoses. Many signaling pathways directly act on tumours, and indirect pathways inhibit the development of bladder urothelial carcinoma. This research establishes a scientific foundation for further research into the framework of action of Zhuling Jisheng decoction in the therapy of bladder urothelial cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Biologia Computacional , Medicamentos de Ervas Chinesas/química , Redes Reguladoras de Genes/efeitos dos fármacos , Marcadores Genéticos/efeitos dos fármacos , Humanos , Inflamação/tratamento farmacológico , Medicina Tradicional Chinesa , Neovascularização Patológica/tratamento farmacológico , Farmacologia em Rede , Plantas Medicinais/química , Prognóstico , Mapas de Interação de Proteínas/efeitos dos fármacos , Mapas de Interação de Proteínas/genética , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
15.
ACS Appl Mater Interfaces ; 12(11): 13189-13199, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32134628

RESUMO

Nondegradable heavy metals have caused great dangers to the environment and human health. Combining stimuli-responsive materials with conventional MOF-based adsorbents has been considered an effective method to generate intelligent adsorbents for superior control over the adsorption process. Herein, a smart MOF-based ratiometric fluorescent adsorbent was designed to accurately monitor the progression of the removal of copper ions with dual-emitting fluorescence signal. Unlike the traditional difunctional materials, this delicately designed platform overcomes the huge energy gap to achieve two functions simultaneously. This unconventional platform provides a reliable fluorescent response toward Cu2+ during the removing process, changing linearly related to the degree of the adsorption process, which holds extreme promise in effectively monitoring the adsorption process. The underlying relationship of the adsorption and fluorescence response process toward copper was investigated by density functional theory (DFT) calculations. In particular, because of the favorable ion binding affinity of ZIF-8 and self-calibrating effect of RhB, the as-prepared smart adsorbent demonstrates a superior adsorption performance of 608 mg g-1, broad response range (0.05-200 ppm, 2.07 × 10-7to 8.29 × 10-4 M), ultrahigh sensitivity (0.04 ppm, 1.91 × 10-7 M) toward Cu2+ and strong anti-interference ability. This smart adsorbent opens an intelligent pathway to promote substantial advancements in the fields of environmental monitoring and industrial waste management.

16.
J Environ Radioact ; 213: 106158, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31983440

RESUMO

A novel biosorbent was prepared and applied for the removal of uranium from aqueous solution. A new immobilization method was studied and used to embed living yeast cells of Saccharomyces cerevisiae (2% w/v) by sodium sulfate (0.5 mol/L) based on saturated boric acid-alginate calcium cross-linking method. The swelling ratio, hydraulic and chemical stability and bioactivity of immobilized microbial cells were examined. Their ultra-microstructure and property were observed by SEM, TEM and FTIR techniques. The influencing factors, such as contact time, initial uranium concentration, and initial pH were investigated. The adsorption capacity of biosorbent increased from 0.75 to 113.4 µmol/g when the equilibrium concentration of U was 0.9, and 43.9 µmol/L, respectively. U adsorption followed pseudo first-order kinetic model. SEM-EDS and TEM-EDS observation indicated that uranium was adsorbed both on the surface and the inner parts of the biosorbent. FTIR and the XPS results confirmed the role of oxygen in capturing uranium from aqueous solution. XPS analysis showed that the mixture of U (VI) and U (IV) existed on the surface of biosorbent, which evidenced that uranium was microbiologically reduced.


Assuntos
Saccharomyces cerevisiae , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Monitoramento de Radiação , Urânio
17.
Carbohydr Polym ; 226: 115283, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31582088

RESUMO

Deproteinization is a crucial step for the purification of polysaccharides from natural biomass. However, traditional deproteinization technologies often suffer from complicated operating processes and the usage of toxic chemical reagents. Herein, an advanced and universal deproteinization method based on dual-functional adsorbent consisted of preferential protein adsorption coating of tannic acid-FeIII (TA-FeIII) and magnetic Fe3O4 (Fe3O4@TA-FeIII, abbreviated as FTF NPs) was developed. The proposed FTF NPs showed remarkable efficiency to remove protein from Lycium barbarum L. polysaccharides (LBPs) with deproteinization ratio of 96%, higher than the typical Sevag method (85%). Detailed adsorption kinetics studies demonstrated deproteinization process reached equilibrium after 10 min, faster than other reported deproteinization adsorbents. Furthermore, FTF NPs are structurally and functionally nondestructive as regards LBPs without using organic reagents. Also, it exhibited widespread-use deproteinization performance to several common plant species. Therefore, the proposed nano-separation based on TA-FeIII complex is an advanced and universal tool to high-efficiently deproteinize plant polysaccharides.


Assuntos
Medicamentos de Ervas Chinesas/isolamento & purificação , Compostos Férricos/química , Polissacarídeos/isolamento & purificação , Taninos/química , Adsorção , Cinética , Lycium/metabolismo , Fenômenos Magnéticos
18.
Bioresour Technol ; 292: 122012, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31442834

RESUMO

Antibiotic fermentation residue produced from pharmaceutical plants has been listed as a "Hazardous Waste", however it contains various substrates which can be used for biofuel production. In this study, the possibility of biohydrogen production from antibiotic fermentation residue was evaluated, the process efficiency and microbial community dynamics with five different inoculum pretreatments (alkaline, γ-radiation, heat-shock, aeration and acid) were assessed. Results showed that alkaline pretreatment was most efficient for hydrogen fermentation, and the hydrogen yield, volatile solids (VS) removal and maximal hydrogen production rate reached 17.8 mL/g-VSadded, 17.8% and 3.79 mL/h, respectively. Different inoculum pretreatments led to a obvious variation in the fermentation pathway and microbial community structure. The highest content of hydrogen-producing bacteria, especially Clostridium, essentially contributed to the highest hydrogen fermentation efficiency for the system with alkaline pretreatment. This investigation suggested that antibiotic fermentation residue is a potential feedstock for hydrogen production through dark fermentation.


Assuntos
Antibacterianos , Microbiota , Clostridium , Fermentação , Hidrogênio
19.
J Cell Mol Med ; 23(9): 6454-6465, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31293090

RESUMO

Tanshinone I (Tan I) is a widely used diterpene compound derived from the traditional Chinese herb Danshen. Increasing evidence suggests that it exhibits anti-cancer activity in various human cancers. However, the in vitro and in vivo effects of Tan I on osteosarcoma (OS) remain inadequately elucidated, especially those against tumour metastasis. Our results showed that Tan I significantly inhibited OS cancer cell proliferation, migration and invasion and induced cell apoptosis in vitro. Moreover, treatment with 10 and 20 mg/kg Tan I effectively suppressed tumour growth in subcutaneous xenografts and orthotopic xenograft mouse models. In addition, Tan I significantly inhibited tumour metastasis in intracardiac inoculation xenograft models. The results also showed that Tan I-induced increased expression of the proapoptotic gene Bax and decreased expression of the anti-apoptotic gene Bcl-2 is the possible mechanism of its anti-cancer effects. Tan I was also found to abolish the IL-6-mediated activation of the JAK/STAT3 signalling pathway. Conclusively, this study is the first to show that Tan I suppresses OS growth and metastasis in vitro and in vivo, suggesting it may be a potential novel and efficient drug candidate for the treatment of OS progression.


Assuntos
Abietanos/farmacologia , Proliferação de Células/efeitos dos fármacos , Janus Quinases/metabolismo , Metástase Neoplásica/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Camundongos , Osteossarcoma/metabolismo , Salvia miltiorrhiza , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
20.
Bioresour Technol ; 291: 121808, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31326684

RESUMO

This study explored the mechanisms of the enhanced hydrogen production from macroalgae by Fe2+ supplementation. Highest hydrogen yield of 19.47 mL/g VSadded was achieved at Fe2+ supplementation of 400 mg/L, which was 6.25 times of the control test. In depth analysis of substrate degradation, microbial distribution and metabolites formation was conducted. The results showed that Fe2+-supplemented group was dominated by Clostridium butyricum (67.2%) and Ruminococcus gnavus (24.2%), which stimulated hydrogen generation and volatile organic acids accumulation. In contrast, Fe2+-deficient group had a microbial community dominated by Exiguobacterium sp. (29.0%), Acinetobacter lwoffii (24.5%) and Clostridium stricto 13 (23.4%), which induced higher efficiency of both biomass hydrolysis and mineralization. Microbes from a single system were mutually cooperative, while microbes from Fe2+-deficient and those from Fe2+-supplemented systems were mutually exclusive. This study suggested that Fe2+ is critical in macroalgae fermentation system to affect the microbial community structure and subsequently switch the metabolic pathways.


Assuntos
Alga Marinha , Clostridium , Fermentação , Hidrogênio , Ferro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA