Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Food Chem ; 447: 138979, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38518617

RESUMO

Traditional Beijing roast duck often suffers from uneven color and high sugar content after roasting. Water-in-oil (W/O) nanoemulsion is a promising alternative to replace high concentration of sugar solution used in sugaring process according to similarity-intermiscibility theory. Herein, 3% of xylose was embedded in the aqueous phase of W/O emulsion to replace 15% maltose solution. W/O emulsions with different ratios of lecithin (LEC) and polyglycerol polyricinoleate (PGPR) were constructed by high-speed homogenization and high-pressure homogenization. Distribution and penetration extent of solutions and emulsions through the duck skin, as well as the color uniformity of Beijing roast duck were analyzed. Emulsions with LEC:PGPR ratios of 1:3 and 2:2 had better stability. Stable interfacial film and spatial structure were important factors influencing emulsion stabilization. The stable W/O emulsions could more uniformly distribute onto the surface of duck skin and longitudinally penetrate through the skin than solutions.


Assuntos
Patos , Glicerol/análogos & derivados , Lecitinas , Ácidos Ricinoleicos , Animais , Lecitinas/química , Emulsões/química , Açúcares , Água/química , Pequim
2.
Foods ; 13(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38254528

RESUMO

Two fermenters, Lactobacillus acidophilus (LA) and the active dry yellow wine yeast (HY), were utilized to ferment cattle bones in order to release calcium. The influences of fermenters and the fermentation process on the calcium release capacity, particle properties, morphology, and chemical composition of bone powders were assessed, and the underlying mechanism was discussed. The results showed that LA had a better capacity of acid production than yeast, and therefore released more calcium during the fermentation of bone powders. The released calcium in the fermentation broth mainly existed in the forms of free Ca2+ ions, organic acid-bound calcium and a small amount of calcium-peptide chelate. For bone powders, the fermentation induced swollen bone particles, increased particle size, and significant changes of the internal chemical structure. Therefore, fermentation has a great potential in the processing of bone-derived products, particularly to provide new ideas for the development of calcium supplement products.

3.
Hortic Res ; 10(6): uhad073, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37303613

RESUMO

An ancient hexaploidization event in the most but not all Asteraceae plants, may have been responsible for shaping the genomes of many horticultural, ornamental, and medicinal plants that promoting the prosperity of the largest angiosperm family on the earth. However, the duplication process of this hexaploidy, as well as the genomic and phenotypic diversity of extant Asteraceae plants caused by paleogenome reorganization, are still poorly understood. We analyzed 11 genomes from 10 genera in Asteraceae, and redated the Asteraceae common hexaploidization (ACH) event ~70.7-78.6 million years ago (Mya) and the Asteroideae specific tetraploidization (AST) event ~41.6-46.2 Mya. Moreover, we identified the genomic homologies generated from the ACH, AST and speciation events, and constructed a multiple genome alignment framework for Asteraceae. Subsequently, we revealed biased fractionations between the paleopolyploidization produced subgenomes, suggesting the ACH and AST both are allopolyplodization events. Interestingly, the paleochromosome reshuffling traces provided clear evidence for the two-step duplications of ACH event in Asteraceae. Furthermore, we reconstructed ancestral Asteraceae karyotype (AAK) that has 9 paleochromosomes, and revealed a highly flexible reshuffling of Asteraceae paleogenome. Of specific significance, we explored the genetic diversity of Heat Shock Transcription Factors (Hsfs) associated with recursive whole-genome polyploidizations, gene duplications, and paleogenome reshuffling, and revealed that the expansion of Hsfs gene families enable heat shock plasticity during the genome evolution of Asteraceae. Our study provides insights on polyploidy and paleogenome remodeling for the successful establishment of Asteraceae, and is helpful for further communication and exploration of the diversification of plant families and phenotypes.

4.
Food Chem ; 419: 136004, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37054511

RESUMO

Chitosan (CS) films have poor mechanical property, low water-resistance and limited antimicrobial activity, which hinder their application in food preservation industry. Cinnamaldehyde-tannic acid-zinc acetate nanoparticles (CTZA NPs) assembled from edible medicinal plant extracts were successfully incorporated into CS films to solve these issues. The tensile strength and water contact angle of the composite films increased about 5.25-fold and 17.55°. The addition of CTZA NPs reduced the water sensitivity of CS films, which could undergo appreciable stretching in water without breaking. Furthermore, CTZA NPs significantly enhanced the UV adsorption, antibacterial, and antioxidant properties of the films, while reduced their water vapor permeability. Moreover, it was possible to print inks onto the films because the presence of the hydrophobic CTZA NPs facilitated the deposition of carbon powder onto their surfaces. The films with great antibacterial and antioxidant activities can be applied for food packaging application.


Assuntos
Quitosana , Nanopartículas , Quitosana/química , Antioxidantes/farmacologia , Antioxidantes/química , Taninos , Acetato de Zinco , Antibacterianos/farmacologia , Antibacterianos/química , Embalagem de Alimentos , Resistência à Tração , Nanopartículas/química
5.
Nutrients ; 14(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893921

RESUMO

Vitamin D supplementation is linked to improved outcomes from respiratory virus infection, and the COVID-19 pandemic renewed interest in understanding the potential role of vitamin D in protecting the lung from viral infections. Therefore, we evaluated the role of vitamin D using animal models of pandemic H1N1 influenza and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. In mice, dietary-induced vitamin D deficiency resulted in lung inflammation that was present prior to infection. Vitamin D sufficient (D+) and deficient (D-) wildtype (WT) and D+ and D- Cyp27B1 (Cyp) knockout (KO, cannot produce 1,25(OH)2D) mice were infected with pandemic H1N1. D- WT, D+ Cyp KO, and D- Cyp KO mice all exhibited significantly reduced survival compared to D+ WT mice. Importantly, survival was not the result of reduced viral replication, as influenza M gene expression in the lungs was similar for all animals. Based on these findings, additional experiments were performed using the mouse and hamster models of SARS-CoV-2 infection. In these studies, high dose vitamin D supplementation reduced lung inflammation in mice but not hamsters. A trend to faster weight recovery was observed in 1,25(OH)2D treated mice that survived SARS-CoV-2 infection. There was no effect of vitamin D on SARS-CoV-2 N gene expression in the lung of either mice or hamsters. Therefore, vitamin D deficiency enhanced disease severity, while vitamin D sufficiency/supplementation reduced inflammation following infections with H1N1 influenza and SARS-CoV-2.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Deficiência de Vitamina D , Animais , Humanos , Pulmão/metabolismo , Camundongos , Pandemias , SARS-CoV-2 , Vitamina D/uso terapêutico , Deficiência de Vitamina D/epidemiologia , Vitaminas
6.
Food Res Int ; 156: 111314, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35651070

RESUMO

Silymarin exhibits biological activities that may promote human health and wellbeing, including antioxidant, antimicrobial, anti-inflammatory, and anti-cancer activities. Consequently, it has potential for application as a nutraceutical ingredient in functional foods and supplements. But its application for this purpose is currently limited by its poor water solubility, chemical stability, and bioavailability. The potential of nano-delivery systems to improve the functional performance of silymarin was reviewed in this manuscript. The formation, attributes, and applications of biopolymer-based, lipid-based, surfactant-based, and miscellaneous nanocarriers are discussed. In particular, the impact of the different delivery systems such as biopolymer-based, lipid-based delivery systems on the gastrointestinal fate of silymarin is summarized. The encapsulation in edible nanocarriers can improve the bioavailability of silymarin by enhancing its water-dispersibility, inhibiting its degradation, and increasing its absorption.These nanocarriers may therefore be utilized to incorporate this nutraceutical into functional foods and supplements in a bioavailable form.


Assuntos
Silimarina , Biopolímeros , Suplementos Nutricionais , Humanos , Lipídeos , Água
7.
ACS Synth Biol ; 11(4): 1542-1554, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35311250

RESUMO

Oleic acid is widely applied in the chemical, material, nutritional, and pharmaceutical industries. However, the current production of oleic acid via high oleic plant oils is limited by the long growth cycle and climatic constraints. Moreover, the global demand for high oleic plant oils, especially the palm oil, has emerged as the driver of tropical deforestation causing tropical rainforest destruction, climate change, and biodiversity loss. In the present study, an alternative and sustainable strategy for high oleic oil production was established by reprogramming the metabolism of the oleaginous yeast Yarrowia lipolytica using a two-layer "push-pull-block" strategy. Specifically, the fatty acid synthesis pathway was first engineered to increase oleic acid proportion by altering the fatty acid profiles. Then, the content of storage oils containing oleic acid was boosted by engineering the synthesis and degradation pathways of triacylglycerides. The strain resulting from this two-layer engineering strategy produced the highest titer of high oleic microbial oil reaching 56 g/L with 84% oleic acid in fed-batch fermentation, representing a remarkable improvement of a 110-fold oil titer and 2.24-fold oleic acid proportion compared with the starting strain. This alternative and sustainable method for high oleic oil production shows the potential of substitute planting.


Assuntos
Yarrowia , Ácidos Graxos/metabolismo , Engenharia Metabólica/métodos , Ácido Oleico/metabolismo , Óleos de Plantas/metabolismo , Yarrowia/metabolismo
8.
Nat Plants ; 7(9): 1239-1253, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34475528

RESUMO

Aristolochia, a genus in the magnoliid order Piperales, has been famous for centuries for its highly specialized flowers and wide medicinal applications. Here, we present a new, high-quality genome sequence of Aristolochia fimbriata, a species that, similar to Amborella trichopoda, lacks further whole-genome duplications since the origin of extant angiosperms. As such, the A. fimbriata genome is an excellent reference for inferences of angiosperm genome evolution, enabling detection of two novel whole-genome duplications in Piperales and dating of previously reported whole-genome duplications in other magnoliids. Genomic comparisons between A. fimbriata and other angiosperms facilitated the identification of ancient genomic rearrangements suggesting the placement of magnoliids as sister to monocots, whereas phylogenetic inferences based on sequence data we compiled yielded ambiguous relationships. By identifying associated homologues and investigating their evolutionary histories and expression patterns, we revealed highly conserved floral developmental genes and their distinct downstream regulatory network that may contribute to the complex flower morphology in A. fimbriata. Finally, we elucidated the genetic basis underlying the biosynthesis of terpenoids and aristolochic acids in A. fimbriata.


Assuntos
Aristolochia/crescimento & desenvolvimento , Aristolochia/genética , Ácidos Aristolóquicos/biossíntese , Evolução Biológica , Flores/crescimento & desenvolvimento , Flores/genética , Magnoliopsida/genética , Terpenos/metabolismo , Ácidos Aristolóquicos/genética , Variação Genética , Genoma de Planta , Genótipo , Filogenia , Plantas Medicinais/genética , Plantas Medicinais/crescimento & desenvolvimento
9.
Medicine (Baltimore) ; 99(12): e19111, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32195931

RESUMO

BACKGROUND: Thin endometrium, defined as <7 mm of the endometrial thickness around ovulation period, had been identified as a negative factor on pregnancy rate of infertile women. It was considered to be the toughest part in treatment of infertility, because there was a lack of significant effect, although many drugs had been already used. Icariin was one of the major bioactive pharmaceutical constituent extracted from the Chinese herb "Ying Yang Huo," in the genus of Epimedium, and some randomized controlled trials reported its application for thin endometrium. There is no systematic review focusing on the effective of icariin in treating infertile women with thin endometrium, so our review aims to explore it. METHODS: The bibliographic database and electronic library will be systematically searched online, such as MEDLINE, EMBASE, Web of Science, Clinicaltrails.org., China National Knowledge Infrastructure Database (CNKI), Wan fang Database, China Biology Medicine Database (CBM), VIP Science Technology Periodical Database, and Cochrane Library. And the reference listed for potential literatures of included studies will be scanned additionally. Related randomized controlled trials (RCTs) will be collected and selected before January 4, 2020. Trials will be screened by independent reviewers, and the literature will be search in English or Chinese, with the search terms as "Icariin," "Epimedium," "infertile women," "female infertility," "endometrium," "pregnancy rate." The software for Systematic review and Meta-analysis is RevMan 5.3. The protocol and the systematic review will be reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols (PRISMA-P) statement. RESULT AND CONCLUSION: The efficacy of icariin to treat thin endometrium will be evaluated, and the conclusion will be published to help clinicians determine treatment strategy for infertile women with thin endometirum by providing medical evidence. REGISTRATION INFORMATION: PROSPERO CRD42019148977.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Endométrio/fisiopatologia , Flavonoides/uso terapêutico , Infertilidade Feminina/tratamento farmacológico , China , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/efeitos adversos , Feminino , Flavonoides/administração & dosagem , Flavonoides/efeitos adversos , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto
10.
BMC Plant Biol ; 20(1): 85, 2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32087672

RESUMO

BACKGROUND: Phosphorus (P) deficiency is one of the major constraints limiting plant growth, especially in acid soils. Stylosanthes (stylo) is a pioneer tropical legume with excellent adaptability to low P stress, but its underlying mechanisms remain largely unknown. RESULTS: In this study, the physiological, molecular and metabolic changes in stylo responding to phosphate (Pi) starvation were investigated. Under low P condition, the growth of stylo root was enhanced, which was attributed to the up-regulation of expansin genes participating in root growth. Metabolic profiling analysis showed that a total of 256 metabolites with differential accumulations were identified in stylo roots response to P deficiency, which mainly included flavonoids, sugars, nucleotides, amino acids, phenylpropanoids and phenylamides. P deficiency led to significant reduction in the accumulation of phosphorylated metabolites (e.g., P-containing sugars, nucleotides and cholines), suggesting that internal P utilization was enhanced in stylo roots subjected to low P stress. However, flavonoid metabolites, such as kaempferol, daidzein and their glycoside derivatives, were increased in P-deficient stylo roots. Furthermore, the qRT-PCR analysis showed that a set of genes involved in flavonoids synthesis were found to be up-regulated by Pi starvation in stylo roots. In addition, the abundances of phenolic acids and phenylamides were significantly increased in stylo roots during P deficiency. The increased accumulation of the metabolites in stylo roots, such as flavonoids, phenolic acids and phenylamides, might facilitate P solubilization and cooperate with beneficial microorganisms in rhizosphere, and thus contributing to P acquisition and utilization in stylo. CONCLUSIONS: These results suggest that stylo plants cope with P deficiency by modulating root morphology, scavenging internal Pi from phosphorylated metabolites and increasing accumulation of flavonoids, phenolic acids and phenylamides. This study provides valuable insights into the complex responses and adaptive mechanisms of stylo roots to P deficiency.


Assuntos
Fabaceae/metabolismo , Metaboloma , Compostos de Fósforo/metabolismo , Fósforo/deficiência , Raízes de Plantas/metabolismo , Fabaceae/genética , Expressão Gênica , Genes de Plantas , Solo/química
11.
Plant Biotechnol J ; 18(6): 1444-1456, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31799788

RESUMO

Coriander (Coriandrum sativum L. 2n = 2x = 22), a plant from the Apiaceae family, also called cilantro or Chinese parsley, is a globally important crop used as vegetable, spice, fragrance and traditional medicine. Here, we report a high-quality assembly and analysis of its genome sequence, anchored to 11 chromosomes, with total length of 2118.68 Mb and N50 scaffold length of 160.99 Mb. We found that two whole-genome duplication events, respectively, dated to ~45-52 and ~54-61 million years ago, were shared by the Apiaceae family after their split from lettuce. Unbalanced gene loss and expression are observed between duplicated copies produced by these two events. Gene retention, expression, metabolomics and comparative genomic analyses of terpene synthase (TPS) gene family, involved in terpenoid biosynthesis pathway contributing to coriander's special flavour, revealed that tandem duplication contributed to coriander TPS gene family expansion, especially compared to their carrot counterparts. Notably, a TPS gene highly expressed in all 4 tissues and 3 development stages studied is likely a major-effect gene encoding linalool synthase and myrcene synthase. The present genome sequencing, transcriptome, metabolome and comparative genomic efforts provide valuable insights into the genome evolution and spice trait biology of Apiaceae and other related plants, and facilitated further research into important gene functions and crop improvement.


Assuntos
Coriandrum , Mapeamento Cromossômico , Emoções , Genoma de Planta , Plantas , Transcriptoma
12.
BMC Plant Biol ; 19(1): 487, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31711412

RESUMO

BACKGROUND: Hazy weather significantly increase air pollution and affect light intensity which may also affect medicinal plants growth. Syringa oblata Lindl. (S. oblata), an effective anti-biofilm medicinal plants, is also vulnerable to changes in plant photoperiods and other abiotic stress responses. Rutin, one of the flavonoids, is the main bioactive ingredient in S. oblata that inhibits Streptococcus suis biofilm formation. Thus, the present study aims to explore the biosynthesis and molecular basis of flavonoids in S. oblata in response to different light intensity. RESULTS: In this study, it was shown that compared with natural (Z0) and 25% ~ 35% (Z2) light intensities, the rutin content of S. oblata under 50% ~ 60% (Z1) light intensity increased significantly. In addition, an integrated analysis of metabolome and transcriptome was performed using light intensity stress conditions from two kinds of light intensities which S. oblata was subjected to: Z0 and Z1. The results revealed that differential metabolites and genes were mainly related to the flavonoid biosynthetic pathway. We found out that 13 putative structural genes and a transcription factor bHLH were significantly up-regulated in Z1. Among them, integration analysis showed that 3 putative structural genes including 4CL1, CYP73A and CYP75B1 significantly up-regulated the rutin biosynthesis, suggesting that these putative genes may be involved in regulating the flavonoid biosynthetic pathway, thereby making them key target genes in the whole metabolic process. CONCLUSIONS: The present study provided helpful information to search for the novel putative genes that are potential targets for S. oblata in response to light intensity.


Assuntos
Flavonoides/biossíntese , Luz , Metaboloma/efeitos da radiação , Syringa/metabolismo , Transcriptoma/efeitos da radiação , Vias Biossintéticas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Syringa/genética , Syringa/efeitos da radiação
13.
J Agric Food Chem ; 67(14): 3966-3980, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30888158

RESUMO

Most conventional synthetic hydrogels suffer from poor mechanical properties; despite recent significant progress in fabricating tough hydrogels, it is still a challenge to simultaneously realize high stretchability, self-recovery, and self-healing capability in a hydrogel. In this work, a new type of starch/PVA/borax hybrid dual cross-linked (DC) hydrogel was synthesized by a one-pot method. The as-prepared DC hydrogels exhibited mechanical properties of remarkable extensibility (ca. 2485%), excellent toughness (ca. 290.5 kJ m-3), high compression strength (ca. 547.8 kPa), rapid recoverability (81.9% energy recovery after 30 min), and free-shapeable behavior. More impressively, the DC gels sustained approximately 300 times their own weight and exhibited an outstanding self-healing capability at room temperature both in air and underwater. Furthermore, the adsorption amount of methylene blue onto the anionic DC gel (144.68 mg/g) was much higher than that of corn starch gel. Consequently, the eco-friendly, stable, and biodegradable hydrogels will have a great potential application in removing anionic dyes from the wastewater produced by agriculture and industry.


Assuntos
Hidrogéis/química , Boratos/química , Reagentes de Ligações Cruzadas/química , Hidrogéis/síntese química , Extratos Vegetais/química , Álcool de Polivinil/química , Amido/química , Resistência à Tração , Zea mays/química
14.
Cell Physiol Biochem ; 42(3): 1202-1212, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28683453

RESUMO

BACKGROUND/AIMS: This study aims to investigate the role of circular antisense non-coding RNA at the INK4 locus (cANRIL) in the inflammatory response of vascular endothelial cells (ECs) in a rat model of coronary atherosclerosis (AS). A rat model of AS was established with rats that were injected with a large dose of vitamin D3 and fed a high-fat diet. METHODS: Sixty Wistar rats were randomly assigned into control, model, empty vector, over-expressed cANRIL and low-expressed cANRIL groups (12 rats in each group). Sixteen weeks later, the ultrastructure of their coronary arteries was observed via transmission electron microscopy. Rat serum lipid levels were analyzed using an automatic biochemical analyzer, and their atherogenic index (AI) values were calculated. Hematoxylin and eosin staining was used to observe the endothelial morphology of rats. Additionally, rat EC apoptosis was tested via a TUNEL assay. Enzyme-linked immunosorbent assays (ELISAs) were applied to measure serum levels of interleukin-1 (IL-1), IL-6, matrix metalloproteinase-9 (MMP-9) and C-reactive protein (CRP). The cANRIL, Bax, bcl-2 and caspase-3 mRNA expression levels were measured with a quantitative real-time polymerase chain reaction (qRT-PCR). The protein expression levels of Bax, bcl-2 and caspase-3 were detected using immunohistochemistry. RESULTS: In the control group, ECs were closely arranged with normal structures, and there was no proliferation. In the model, empty vector and over-expressed cANRIL groups, some cells were not present, and atherosclerotic plaques and thrombi appeared. However, in the under-expressed cANRIL group, the cells had a normal structure. Compared with the model and empty vector groups, the levels of total cholesterol (CHOL), triglycerides (TGs), low density lipoprotein (LDL), IL-1, IL-6, MMP-9, CRP, cANRIL, Bax, and caspase-3, AI values, and rates of EC apoptosis decreased in the low-expressed cANRIL group, while HDL (high density lipoprotein) levels and mRNA and protein expression levels of bcl-2 were increased. The changes in expression levels in the over-expressed cANRIL group were the opposite of those in the low-expressed cANRIL group. CONCLUSIONS: Our study provides evidence that reduced cANRIL expression could prevent coronary AS by reducing vascular EC apoptosis and inflammatory factor expression.


Assuntos
Doença da Artéria Coronariana/imunologia , Doença da Artéria Coronariana/patologia , Células Endoteliais/imunologia , Células Endoteliais/patologia , RNA Longo não Codificante/imunologia , Animais , Apoptose , Proteína C-Reativa/análise , Proteína C-Reativa/imunologia , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/genética , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Inflamação/sangue , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Interleucina-1/sangue , Interleucina-1/imunologia , Interleucina-6/sangue , Interleucina-6/imunologia , Masculino , Metaloproteinase 9 da Matriz/sangue , Metaloproteinase 9 da Matriz/imunologia , RNA Longo não Codificante/genética , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA