Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 39(8): 3901-3909, 2018 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-29998700

RESUMO

The enzyme activity, which is closely related to soil material cycling (mineralization, transformation, etc.), can reflect soil quality and nutrient status. In order to explore the effect of long-term fertilization on the enzyme activity in paddy soil profile (0-40 cm), soils with organic fertilizer and inorganic fertilizer, and non-fertilized soils were selected, and the carbon and nitrogen contents, and the activities of ß-1,4-glucosidase (BG), and ß-1,4-N-acetylglucosaminidase (NAG) in 10cm depths of soil were analyzed. The results showed that the activities of BG and NAG in the soils treated with inorganic fertilizer and organic fertilizer increased by 0.73-47.87 nmol·(g·h)-1 and 1.33-128.81 nmol·(g·h)-1, and 0.19-9.72 nmol·(g·h)-1 and 0.92-57.66 nmol·(g·h)-1, respectively, compared to those for non-fertilized soil. Soil enzyme activity decreased with increasing soil depth. Soil enzyme activity in soil from 0-20 cm was significantly higher than that of soil from 20-40 cm. Soil enzyme activities were significantly affected by long term fertilization at different soil depths. RDA analysis showed that soil carbon and nitrogen contents had significant positive relationships with the activities of BG and NAG in the 0-20 cm soil profiles, however, negative relationships were observed in the 20-40 cm soil profiles. The long-term application of organic fertilizer significantly increased soil biomass and enzyme activity, both of which decreased with the increase in soil depth. Long-term fertilization could increase soil nutrient contents, microbial biomass, and extracellular enzyme activities, which has important theoretical significance for optimizing farmland fertilizer management and improving soil productivity.


Assuntos
Enzimas/análise , Fertilizantes , Microbiologia do Solo , Carbono , N-Acetilglucosaminiltransferases/análise , Nitrogênio , Oryza , Fósforo , Solo , beta-Glucosidase/análise
2.
Huan Jing Ke Xue ; 38(4): 1606-1612, 2017 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965165

RESUMO

A suitable fractionation method of phosphorus (P) is a key to effective assessment of soil P componential features. Here a new biologically-based P (BBP) method was used to evaluate the P fractions in the upland and paddy soils across large-scale area in China. The soil P was divided into four components:① soluble or rhizosphere-intercepted (CaCl2-P), ② organic acid activated and inorganic weakly bound (Citrate-P), ③ enzyme mineralization of organic P (Enzyme-P), ④ potential activation of inorganic P (HCl-P). Then, the relationships between biologically-based P fractions and standard Olsen-P were investigated, and driving factors of P fractions were identified. The results showed that P content was in order of HCl-P>Citrate-P>Enzyme-P>CaCl2-P. All P components of upland soil displayed higher levels than those of paddy soil. Moreover, the P components were highly positively correlated with the Olsen-P, suggesting that each P component contributed to soil P availability. However, it was found that Olsen-P was most highly correlated with CaCl2-P and Enzyme-P (R2=0.359; R2=0.386) in upland soil, while Olsen-P was most highly with Citrate-P (R2=0.788) in paddy soil. This result indicated that available P of upland soil was mainly from organic P mineralization and soluble P, and available P in paddy soil was mainly from inorganic P activation. Redundancy analysis (RDA) showed that the P components were mainly affected by soil pH and silt content, which suggested that it could enhance the P availability via regulating soil pH in the agricultural activities.


Assuntos
Fósforo/química , Solo/química , Agricultura , China , Fazendas , Fertilizantes , Oryza
3.
Zhongguo Zhong Yao Za Zhi ; 37(23): 3513-8, 2012 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-23477130

RESUMO

China is the cradle of Chinese herb medicines,with rich plant resources. However, traditional processing methods have many disadvantages, such as high comsumption of organic solvent, long extraction time and high loss of effective constituents. For the purpose of rational use of Chinese herb medicines and accurate analysis on their constituents,the sample pre-treatment method with magnetic nanoparticles as the carrier brought new opportunities in recent years. after consulting literatures,the essay summarizes traditional extraction methods of Chinese herb medicines, characteristics of magnetic materials and their application in the analysis on Chinese herb medicines.


Assuntos
Medicamentos de Ervas Chinesas/análise , Magnetismo/métodos , Plantas Medicinais/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicina Tradicional Chinesa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA