Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 233: 115456, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37285659

RESUMO

Electronic cigarettes have rapidly gained acceptance recently. Nicotine-containing electronic cigarette liquids (e-liquids) are prohibited in some countries, but are permitted and simply available online in others. A rapid detection method is therefore required for on-site inspection or screening of a large amount of samples. Our previous study demonstrated a surface-enhanced Raman scattering (SERS)-based approach to identify nicotine-containing e-liquids; without any pre-treatment, e-liquid can be directly tested on our solid-phase SERS substrates, made of silver nanoparticle arrays embedded in anodic aluminium oxide nanochannels (Ag/AAO). However, this approach required manual determination of spectral signatures and negative samples should be validated in the second round detection. Here, after examining 406 commercial e-liquids, we refined this approach by developing artificial intelligence (AI)-assisted spectrum interpretations. We also found that nicotine and benzoic acid can be simultaneously detected in our platform. This increased test sensitivity because benzoic acid is usually used in nicotine salts. Around 64% of nicotine-positive samples in this study showed both signatures. Using either cutoffs of nicotine and benzoic acid peak intensities or a machine learning model based on the CatBoost algorithm, over 90% of tested samples can be correctly discriminated with only one round of SERS measurement. False negative and false positive rates were 2.5-4.4% and 4.4-8.9%, respectively, depending on the interpretation method and thresholds applied. The new approach takes only 1 microliter of sample and can be performed in 1-2 min, suitable for on-site inspection with portable Raman detectors. It could also be a complementary platform to reduce samples that need to be analyzed in the central labs and has the potential to identify other prohibited additives.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Nanopartículas Metálicas , Nicotina , Análise Espectral Raman , Inteligência Artificial , Ácido Benzoico , Prata
2.
Artigo em Inglês | MEDLINE | ID: mdl-25822695

RESUMO

The addition of copper chlorophyll and its derivatives (Cu-Chl) to vegetable oils to disguise them as more expensive oils, such as virgin olive oils, would not only create public confusion, but also disturb the olive oil market. Given that existing detection methods of Ch-Chl in oils, such as LC-MS are costly and time consuming, it is imperative to develop economical and fast analytical techniques to provide information quickly. This paper demonstrates a rapid analytical method based on surface-enhanced Raman spectroscopy (SERS) to detect Cu-Chl in vegetable oils; the spectroscopic markers of Cu-Chl are presented and a detection limit of 5 mg kg(-1) is demonstrated. The analysis of a series of commercial vegetable oils is undertaken with this method and the results verified by a government agency. This study shows that a SERS-based assessment method holds high potential for quickly pinpointing the addition of minute amounts of Cu-Chl in vegetable oils.


Assuntos
Clorofilídeos/análise , Azeite de Oliva/química , Óleos de Plantas/química , Óleo de Soja/química , Análise Espectral Raman , Análise de Alimentos , Contaminação de Alimentos/análise , Limite de Detecção , Reprodutibilidade dos Testes , Óleo de Girassol
3.
Phys Chem Chem Phys ; 15(12): 4275-82, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23439965

RESUMO

Anomalous optical properties displayed by plasmonic structures are commonly attributed to the enhanced, local field within their corrugations. Though theoretical calculations of such field enhancements abound, experimental observations are relatively few, because only few optical microscopic techniques have enough spatial resolution. We used scattering-type scanning near-field optical microscopy to resolve local optical characteristics of a gold nanoparticle array with 10 nm gap between adjacent particles. Subnanometer-resolution measurement of the optical field intensity was achieved by use of etched silicon atomic force microscopy probe tip. The result shows that, with a p-polarized excitation scheme, the induced field is enhanced and the phase undergoes a large change in the gap region. The spatially-resolved signals are attributed to the electromagnetic interaction within an array of vertical dipoles. We show that scattering-type near-field optical microscopy is well-suited to the investigation of field enhancements in plasmon-enhanced sensing and spectroscopy array structures.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Óxido de Alumínio/química , Microscopia de Força Atômica , Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA