Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 960: 176121, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37866743

RESUMO

Osteoporosis, a systemic bone disease defined by decreased bone mass and deterioration of bone microarchitecture, is becoming a global concern. Nodakenin (NK) is a furanocoumarin-like compound isolated from the traditional Chinese medicine Radix Angelicae biseratae (RAB). NK has been reported to have various pharmacological activities, but osteoporosis has not been reported to be affected by NK. In this study, we used network pharmacology, molecular docking and molecular dynamics simulation techniques to identify potential targets and pathways of NK in osteoporosis. We found that NK treatment significantly promoted osteogenic differentiation of BMSCs while activating the PI3K/AKT/mTOR signalling pathway by measuring alkaline phosphatase activity and the expression of various osteogenic markers. In contrast, LY294002, an inhibitor of PI3K, reversed these changes and inhibited the osteogenic differentiation-enabling effect of NK. Meanwhile, prevent the Akt and NFκB signalling pathways by down-regulating c-Src and TRAF6 thereby effectively inhibiting RANKL-induced osteoclastogenesis. In addition, oral administration of NK to mice significantly elevated bone mass and ameliorated ovariectomized (OVX)-mediated bone microarchitectural disorders. In conclusion, these data suggest that NK attenuates OVX-induced bone loss by enhancing osteogenesis and inhibiting osteoclastogenesis.


Assuntos
Osteogênese , Osteoporose , Feminino , Camundongos , Animais , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Simulação de Acoplamento Molecular , Osteoporose/tratamento farmacológico , Osteoporose/etiologia , Osteoporose/metabolismo , Ovariectomia/efeitos adversos , Osteoclastos , Diferenciação Celular , Ligante RANK/farmacologia
2.
Water Res ; 246: 120713, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37839225

RESUMO

Previous research suggested that two major groups of polyphosphate-accumulating organisms (PAOs), i.e., Ca. Accumulibacter and Tetrasphaera, play cooperative roles in enhanced biological phosphorus removal (EBPR). The fermentation of complex organic compounds by Tetrasphaera provides carbon sources for Ca. Accumulibacter. However, the viability of the fermentation products (e.g., lactate, succinate, alanine) as carbon sources for Ca. Accumulibacter and their potential effects on the metabolism of Ca. Accumulibacter were largely unknown. This work for the first time investigated the capability and metabolic details of Ca. Accumulibacter cognatus clade IIC strain SCUT-2 (enriched in a lab-scale reactor with a relative abundance of 42.8%) in using these fermentation products for EBPR. The enrichment culture was able to assimilate lactate and succinate with the anaerobic P release to carbon uptake ratios of 0.28 and 0.36 P mol/C mol, respectively. In the co-presence of acetate, the uptake of lactate was strongly inhibited, since two substrates shared the same transporter as suggested by the carbon uptake bioenergetic analysis. When acetate and succinate were fed at the same time, Ca. Accumulibacter assimilated two carbon sources simultaneously. Proton motive force (PMF) was the key driving force (up to 90%) for the uptake of lactate and succinate by Ca. Accumulibacter. Apart from the efflux of proton in symport with phosphate via the inorganic phosphate transport system, translocation of proton via the activity of fumarate reductase contributed to the generation of PMF, which agreed with the fact that PHV was a major component of PHA when lactate and succinate were used as carbon sources, involving the succinate-propionate pathway. Metabolic models for the usage of lactate and succinate by Ca. Accumulibacter for EBPR were built based on the combined physiological, biochemical, metagenomic, and metatranscriptomic analyses. Alanine was shown as an invalid carbon source for Ca. Accumulibacter. Instead, it significantly and adversely affected Ca. Accumulibacter-mediated EBPR. Phosphate release was observed without alanine uptake. Significant inhibitions on the aerobic phosphate uptake was also evident. Overall, this study suggested that there might not be a simply synergic relationship between Ca. Accumulibacter and Tetrasphaera. Their interactions would largely be determined by the kind of fermentation products released by the latter.


Assuntos
Betaproteobacteria , Fósforo , Fósforo/metabolismo , Fermentação , Prótons , Reatores Biológicos , Betaproteobacteria/metabolismo , Polifosfatos/metabolismo , Lactatos/metabolismo , Alanina , Succinatos/metabolismo , Carbono/metabolismo , Acetatos/metabolismo
3.
Animals (Basel) ; 13(16)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37627397

RESUMO

Amino acid balance is central to improving the efficiency of feed protein utilization and for reducing environmental pollution caused by intensive farming. In previous studies, supplementation with limiting amino acids has been shown to be an effective means of improving animal nutrient utilization and performance. In this experiment, the effects of methionine on the apparent digestibility of nutrients, antler nutrient composition, rumen fluid amino acid composition, fecal volatile fatty acids and intestinal bacteria in antler-growing sika deer were investigated by randomly adding different levels of methionine to the diets of three groups of four deer at 0 g/day (CON), 4 g/day (LMet) and 6 g/day (HMet). Methionine supplementation significantly increased the apparent digestibility of organic matter, neutral detergent fiber (NDF) and acid detergent fiber (ADF) in the LMet group (p < 0.05). The crude protein and collagen protein of antlers were significantly higher in the LMet and HMet groups compared to the CON group and also significantly higher in the HMet group compared to the LMet group, while the calcium content of antlers was significantly lower in the HMet group (p < 0.05). Ruminal fluid free amino acid composition was altered in the three groups of sika deer, with significant changes in aspartic acid, citrulline, valine, cysteine, methionine, histidine and proline. At the phylum level, Firmicutes and Bacteroidetes were highest in the rectal microflora. Unidentified bacterial abundance was significantly decreased in the HMet group compared to the CON group. Based on the results of principal coordinate analysis (PCoA) and Adonis analysis, there was a significant difference in the composition of the intestinal flora between the CON and HMet groups (p < 0.05). At the genus level, compared with the CON group, the abundance of Rikenellaceae_RC9_gut_group and Lachnospiraceae_UCG-010 in the LMet group increased significantly (p < 0.05), the abundance of dgA-11_gut_group in the HMet group decreased significantly (p < 0.05) and the abundance of Lachnospiraceae_UCG-010, Saccharofermentans and Lachnospiraceae_NK3A20_group increased significantly. Taken together, the results showed that methionine supplementation was beneficial in increasing the feed utilization efficiency and improving antler quality in sika deer, while affecting the composition of fecal bacteria.

4.
Biol Trace Elem Res ; 195(2): 454-460, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31452087

RESUMO

To evaluate the effects of selenium (Se) and vitamin E (Vit E) on female sika deer. This study was conducted using a 3 × 2 + 1 factorial experiment. Depending on treatment design, the deer were fed with the basal diet supplemented with 0.2, 0.3, and 0.4 mg of selenium as well as 100 and 200 IU of vitamin E per kg of dry matter (DM). Accordingly, six groups named G1 to G6 are involved in this study. In addition, group G0 was available in the study, in which the deer were fed with only basal diet. The results show that the final body weight (BW), average daily gain (ADG), and apparent digestibility of crude protein, ether extract, and neutral detergent fiber of the deer in G1 to G6 increased as the selenium level increased from 0.2 to 0.3 mg per kg of DM (P < 0.05). Higher IgG content of the deer was observed with the intake of selenium and vitamin E (P < 0.05). The total content of protein of the deer in G3 was higher than that in G0 (P < 0.05), and the activity of glutathione peroxidase increased following the increase in the supplementation levels of selenium and vitamin E (P < 0.05). Furthermore, selenium had significant effects on the concentration of T4 and T3 (P < 0.05). The optimum levels of selenium and vitamin E for 1-year-old female sika deer were 0.3 mg and 100 IU per kg of dietary DM, respectively.


Assuntos
Nutrientes/farmacologia , Selênio/farmacologia , Vitamina E/farmacologia , Animais , Cervos/crescimento & desenvolvimento , Cervos/metabolismo , Suplementos Nutricionais , Feminino , Nutrientes/administração & dosagem , Nutrientes/sangue , Selênio/administração & dosagem , Selênio/sangue , Vitamina E/administração & dosagem , Vitamina E/sangue
5.
Anim Sci J ; 88(3): 463-467, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27481564

RESUMO

This study aimed to investigate the effects of manganese (Mn) supplementation on nutrient digestibility and antler growth in male sika deer. Twenty 3-year-old male sika deer were divided into four groups (Control, T40, T80 and T120). The control diet contained 22.2 mg Mn/kg. The treatment diets were supplemented with 40, 80 and 120 mg of Mn/kg (provided as Mn methionine). The results showed that the digestibility of dry matter and crude protein in the T80 group was greater than other groups. Higher digestibility of neutral detergent fiber and acid detergent fiber was observed in the T80 group than in the control group. Plasma Mn concentrations in the T80 and T120 groups were higher (P < 0.01) than control and T40 group (P < 0.01). The concentration of Mn in feces was increased with increasing Mn amount. Average daily gain of fresh antler and dry antler of T80 was greater than other groups, especially the control group (P < 0.05). In conclusion, the suitable level of Mn supplementation was found to be 80 mg/kg (total Mn content 103.4 mg/kg dry matter), which significantly increased antler daily gain and feed digestibility in 3-year-old sika deer.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Cervos/crescimento & desenvolvimento , Cervos/fisiologia , Dieta/veterinária , Suplementos Nutricionais , Fenômenos Fisiológicos do Sistema Digestório/efeitos dos fármacos , Manganês/administração & dosagem , Proteólise/efeitos dos fármacos , Animais , Alimentos , Masculino , Manganês/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA