Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 126: 155450, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368794

RESUMO

BACKGROUND: Shen Shuai Ⅱ Recipe (SSR) is clinically used to treat chronic kidney diseases (CKDs) with remarkable efficacy and safety. In earlier research, we found the anti-inflammatory, antioxidant, and mitochondrial protective properties of SSR in hypoxic kidney injury model, which is closely related to its renal protection. Further work is needed to understand the underlying molecular mechanisms. PURPOSE: Further investigation of the mechanisms of action of SSR against renal interstitial fibrosis (RIF) building on previous research leads. METHODS: Rats receiving CKD model surgery were given with Fenofibrate or SSR once a day for eight weeks. In vitro, the NRK-52E cells were treated with SSR in the presence or absence of 10 µM Sc75741, 0.5 µM PMA, or 1 µM fenofibrate under 1% O2. The effects of SSR on NF-κB/NLRP3 inflammatory cascade, secretion of pro-inflammatory cytokines, fatty acid oxidation (FAO), and renal tubular injury were determined by immunoblotting, luminex liquid suspension chip assay, transmission electron microscopy, and Oil red O staining. Next, we delivered PPARα-interfering sequences to kidney tissue and NRK-52E cells by adeno-associated virus (AAV) injection and siRNA transfection methods. Finally, we evaluated the effect of renal tubular cells on fibroblast activation by co-culture method. RESULTS: SSR attenuated the release of IL-18, VEGF, and MCP1 cytokines, inhibited the activation of NF-κB/NLRP3 cascade, increased the PPARα, CPT-1α, CPT-2, ACADL, and MCAD protein expression, and improved the lipid accumulation. Further studies have demonstrated that one of the ways in which SSR suppresses the inflammatory response to protect renal tubular cells is through the restoration of PPARα-mediated FAO. In addition, by means of co-culture ways, the results demonstrated that SSR attenuated secretion of inflammatory mediators in NRK-52E cells by PPARα/NF-κB/NLRP3 pathway, thereby inhibiting renal fibroblast activation. CONCLUSION: SSR inhibits RIF by suppressing inflammatory response of hypoxia-exposed RTECs through PPARα-mediated FAO.


Assuntos
Fenofibrato , Insuficiência Renal Crônica , Ratos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , PPAR alfa/metabolismo , NF-kappa B/metabolismo , Fenofibrato/metabolismo , Fenofibrato/farmacologia , Rim , Inflamação/metabolismo , Citocinas/metabolismo , Ácidos Graxos/metabolismo , Fibrose , Fibroblastos/metabolismo
2.
Phytother Res ; 38(2): 839-855, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081477

RESUMO

Renal interstitial fibrosis (RIF) is the main pathological basis for the progression of chronic kidney disease (CKD), however, effective interventions are limited. Here, we investigated the effect of Icariside II (ICA-II) on RIF and explored the underlying mechanisms. Rats receiving 5/6 ablation and infarction (A/I) surgery were gavaged with ICA-II (5 or 10 mg/kg) for 8 weeks. In vitro, TGF-ß1-stimulated NRK-52E cells were treated with ICA-II and (or) oleic acid, etomoxir, ranolazine, fenofibrate, and GW6471. The effects of ICA-II on RIF, fatty acid oxidation, lipid deposition, and mitochondrial function were determined by immunoblotting, Oil red O staining, colorimetric, and fluorometric assays. Using adeno-associated virus injection and co-culture methods, we further determined mechanisms of ICA-II anti-RIF. ICA-II ameliorated the fibrotic responses in vivo and in vitro. RNA-seq analysis indicated that ICA-II regulated fatty acid degradation and PPAR pathway in 5/6 (A/I) kidneys. ICA-II attenuated lipid accumulation and up-regulated expression of PPARα, CPT-1α, Acaa2, and Acadsb proteins in vivo and in vitro. Compared to ICA-II treatment, ICA-II combined with Etomoxir exacerbated mitochondrial dysfunction and fibrotic responses in TGF-ß-treated NRK-52E cells. Importantly, we determined that ICA-II improved lipid metabolism, fatty acid oxidation, mitochondrial function, and RIF by restoring PPARα. Co-culture revealed that ICA-II decreased the expression of Fibronectin, Collagen-I, α-SMA, and PCNA proteins in NRK-49F cells by restoring PPARα of renal tubular cells. ICA-II may serve as a promising therapeutic agent for RIF in 5/6 (A/I) rats, which may be important for the prevention and treatment of CKD.


Assuntos
Compostos de Epóxi , Flavonoides , Nefropatias , Insuficiência Renal Crônica , Ratos , Animais , PPAR alfa/metabolismo , Linhagem Celular , Nefropatias/tratamento farmacológico , Rim , Fator de Crescimento Transformador beta1/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/patologia , Ácidos Graxos/farmacologia , Metabolismo dos Lipídeos , Fibrose , Lipídeos
3.
J Ethnopharmacol ; 308: 116271, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36806483

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Shen Shuai II Recipe (SSR) is a traditional Chinese medicine prescription with significant clinical efficacy in chronic kidney disease (CKD) by invigorating Qi and resolving blood stasis, clearing away heat and dampness. Our previous studies demonstrated that SSR attenuated renal interstitial fibrosis (RIF) by improving hypoxia and mitochondrial dysfunction. AIM OF THE STUDY: The aim of this study was to investigate the potential mechanisms of SSR against RIF. MATERIALS AND METHODS: The CKD was established by 5/6 ablation/infarction (A/I) operation. After 4 weeks, rats were gavaged with SSR or Fenofibrate for 8 weeks. Hypoxia-treated NRK-52 E cells were treated with SSR and (or) glycolysis inhibitors, including GSK2837808 A (GSK) and 2-Deoxy-D-glucose (2-DG). In addition, Drp1-deficient or MFP-M1-treated NRK-52 E cells were treated with SSR under hypoxic conditions. The effects of SSR on fibrotic phenotype, glycolysis, mitochondrial dynamics and membrane potential in hypoxia-exposed NRK-52 E cells were examined by immunoblotting, colorimetric, and fluorometric methods. Furthermore, we constructed a lactic acid-induced activation model of NRK-49 F cells and a co-culture system. The activation of NRK-49 F cells was evaluated by immunoblotting method. RESULTS: Our findings indicated that SSR significantly attenuated abnormal glycolysis in vivo and in vitro, which was correlated with its renoprotective effect. Further studies revealed that improvement of mitochondrial dynamics could be one of the mechanisms by which SSR inhibits glycolysis to achieve anti-renal fibrosis. Furthermore, treatment with SSR significantly inhibited the lactic acid-induced activation of NRK-49 F cells. The co-culture results further highlighted that SSR inhibited activation of renal fibroblasts and deposition of extracellular matrix by reducing glycolysis in renal tubular cells. CONCLUSIONS: SSR alleviates RIF by inhibiting hypoxia-induced glycolysis through improvement of mitochondrial dynamics.


Assuntos
Nefropatias , Insuficiência Renal Crônica , Ratos , Animais , Dinâmica Mitocondrial , Nefropatias/tratamento farmacológico , Rim , Insuficiência Renal Crônica/tratamento farmacológico , Glicólise , Hipóxia/metabolismo , Fibrose
4.
Zhongguo Zhong Yao Za Zhi ; 47(8): 2170-2177, 2022 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-35531733

RESUMO

This study aims to explore the effect of icariin(ICA) on mitochondrial dynamics in a rat model of chronic renal failure(CRF) and to investigate the molecular mechanism of ICA against renal interstitial fibrosis(RIF). CRF was induced in male Sprague-Dawley(SD) rats with 5/6(ablation and infarction, A/I) surgery(right kidney ablation and 2/3 infarction of the left kidney). Four weeks after surgery, the model rats were randomized into the following groups: 5/6(A/I) group, 5/6(A/I)+low-dose ICA group, and 5/6(A/I)+high-dose ICA group. Another 12 rats that received sham operation were randomly classified into 2 groups: sham group and sham+ICAH group. Eight weeks after treatment, the expression of collagen-Ⅰ(Col-Ⅰ), collagen-Ⅲ(Col-Ⅲ), mitochondrial dynamics-related proteins(p-Drp1 S616, p-Drp1 S637, Mfn1, Mfn2), and mitochondrial function-related proteins(TFAM, ATP6) in the remnant kidney tissues was detected by Western blot. The expression of α-smooth muscle actin(α-SMA) was examined by immunohistochemical(IHC) staining. The NRK-52 E cells, a rat proximal renal tubular epithelial cell line, were cultured in vitro and treated with ICA of different concentration. Cell viability was detected by CCK-8 assay. In NRK-52 E cells stimulated with 20 ng·mL~(-1) TGF-ß1 for 24 h, the effect of ICA on fibronectin(Fn), connective tissue growth factor(CTGF), p-Drp1 S616, p-Drp1 S637, Mfn1, Mfn2, TFAM, and ATP6 was detected by Western blot, and the ATP content and the mitochondrial morphology were determined. The 20 ng·mL~(-1) TGF-ß1-stimulated NRK-52 E cells were treated with or without 5 µmol·L~(-1) ICA+10 µmol·L~(-1) mitochondrial fusion promoter M1(MFP-M1) for 24 h and the expression of fibrosis markers Fn and CTGF was detected by Western blot. Western blot result showed that the levels of Col-Ⅰ, Col-Ⅲ, and p-Drp1 S616 were increased and the levels of p-Drp1 S637, Mfn1, Mfn2, TFAM, and ATP6 were decreased in 5/6(A/I) group compared with those in the sham group. The levels of Col-Ⅰ, Col-Ⅲ, and p-Drp1 S616 were significantly lower and the levels of p-Drp1 S637, Mfn1, Mfn2, TFAM, and ATP6 were significantly higher in ICA groups than that in 5/6(A/I) group. IHC staining demonstrated that for the expression of α-SMA in the renal interstitium was higher in the 5/6(A/I) group than in the sham group and that the expression in the ICA groups was significantly lower than that in the 5/6(A/I) group. Furthermore, the improvement in the fibrosis, mitochondrial dynamics, and mitochondrial function were particularly prominent in rats receiving the high dose of ICA. The in vitro experiment revealed that ICA dose-dependently inhibited the increase of Fn, CTGF, and p-Drp1 S616, increased p-Drp1 S637, Mfn1, Mfn2, TFAM, and ATP6, elevated ATP content, and improved mitochondrial morphology of NRK-52 E cells stimulated by TGF-ß1. ICA combined with MFP-M1 further down-regulated the expression of Fn and CTGF in NRK-52 E cells stimulated by TGF-ß1 compared with ICA alone. In conclusion, ICA attenuated RIF of CRF by improving mitochondrial dynamics.


Assuntos
Falência Renal Crônica , Insuficiência Renal Crônica , Animais , Feminino , Masculino , Ratos , Trifosfato de Adenosina/farmacologia , Fibrose , Flavonoides , Infarto/metabolismo , Infarto/patologia , Rim , Dinâmica Mitocondrial , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta1/metabolismo
5.
Phytomedicine ; 98: 153947, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35104767

RESUMO

BACKGROUND: Shen Shuai Ⅱ Recipe (SSR) is an effective Chinese herbal formula for the treatment of patients with chronic kidney disease (CKD) in the clinic and significantly improves 5/6 ablation and infarction (A/I) surgery-induced renal interstitial fibrosis (RIF) and intrarenal hypoxia in rats. However, the underlying molecular mechanisms need further elucidation. PURPOSE: This study aims to investigate the renoprotective mechanisms of SSR in vivo and in vitro. METHODS: CKD model was induced in rats with 5/6 (A/I) surgery. 4 weeks later, rats were treated with vehicle or SSR or Fenofibrate by daily gavage. In vitro, HK2 cells exposed to hypoxia (1% O2) were treated with SSR in the presence or absence of 100 µM MitoTEMPO or 10 µM Mitochondrial Fusion Promoter M1. The effects of SSR on RIF, mitochondrial dynamics, oxidative metabolism, and mitochondrial ROS (mtROS) were determined by immunoblotting, colorimetric, and fluorometric assays according to the experimental protocols. Furthermore, to explore the mechanisms of SSR against RIF, HK2 cells of PGC-1α or MFN2 knockdown under hypoxic stimulation were treated with 400 µg/ml of SSR and (or) 1 µM of ZLN005. RESULTS: The results showed that treatment with SSR significantly improved mitochondrial morphology and function, up-regulated the expression of PGC-1α protein, and inhibited the production of mtROS in 5/6 (A/I) kidneys and hypoxia-treated HK2 cells, which may be closely correlated with its anti-RIF effect. In addition, compared to wild-type HK2 cells, the roles of SSR in improving mitochondrial dynamics and energy metabolism were greatly diminished in HK2 cells of PGC-1α knockdown under hypoxic exposure. More importantly, compared to ZLN005 or SSR combined with ZLN005 treatment, MFN2-deficient HK2 cells exhibited the increased protein levels of FN, α-SMA, TGF-ß1 and cleaved IL-1ß in response to hypoxic stimulation. CONCLUSION: SSR exerted the renoprotective effects by improving mitochondrial dynamics under hypoxic condition via PGC-1α activation.

6.
Phytother Res ; 35(11): 6204-6215, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34426999

RESUMO

Icariin (ICA) is a bioactive flavonoid extracted from Epimedium brevicornum Maxim and exhibits a variety of pharmacological activities including antiinflammatory and antioxidant effects. Recently, icariin has shown renoprotective role by inhibiting pathological matrix. However, the underlying mechanisms of the efficacy remain unknown. This study aimed to determine the effects of icariin on renal fibrosis and explore its molecular mechanisms. Chronic kidney disease (CKD) was induced in rats with 5/6 ablation and infarction (A/I) operation. Four weeks later, rats were treated with vehicle or 20 mg/kg (low dose) or 40 mg/kg (high dose) of icariin by daily gavage. Furthermore, to further elucidate the effect mechanisms of icariin, in vitro, NRK-49F cells stimulated by 8 ng/ml IL-1ß were treated with icariin in the presence or absence of SB431542 or the neutralizing antibody of transforming growth factor-ß (TGF-ß) for 24 h. We showed that icariin treatment for 8 weeks dose-dependently improved 5/6 (A/I)-induced kidney injury and fibrosis, and blocked the release of inflammatory cytokine IL-1ß. In vitro, icariin inhibited IL-1ß/TGF-ß-mediated activation of renal fibroblasts. In summary, anti-fibrotic effects of icariin were interconnected with the inhibition of renal fibroblast activation caused by IL-1ß/TGF-ß signaling.


Assuntos
Rim , Insuficiência Renal Crônica , Animais , Fibroblastos , Fibrose , Flavonoides/farmacologia , Interleucina-1beta , Rim/patologia , Ratos , Insuficiência Renal Crônica/tratamento farmacológico , Fatores de Crescimento Transformadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA