Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(7): 9210-9223, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38330192

RESUMO

Biology resolves design requirements toward functional materials by creating nanostructured composites, where individual components are combined to maximize the macroscale material performance. A major challenge in utilizing such design principles is the trade-off between the preservation of individual component properties and emerging composite functionalities. Here, polysaccharide pectin and silk fibroin were investigated in their composite form with pectin as a thermal-responsive ion conductor and fibroin with exceptional mechanical strength. We show that segregative phase separation occurs upon mixing, and within a limited compositional range, domains ∼50 nm in size are formed and distributed homogeneously so that decent matrix collective properties are established. The composite is characterized by slight conformational changes in the silk domains, sequestering the hydrogen-bonded ß-sheets as well as the emergence of randomized pectin orientations. However, most dominant in the composite's properties is the introduction of dense domain interfaces, leading to increased hydration, surface hydrophilicity, and increased strain of the composite material. Using controlled surface charging in X-ray photoelectron spectroscopy, we further demonstrate Ca ions (Ca2+) diffusion in the pectin domains, with which the fingerprints of interactions at domain interfaces are revealed. Both the thermal response and the electrical conductance were found to be strongly dependent on the degree of composite hydration. Our results provide a fundamental understanding of the role of interfacial interactions and their potential applications in the design of material properties, polysaccharide-protein composites in particular.


Assuntos
Fibroínas , Nanoestruturas , Seda/química , Fibroínas/química , Polissacarídeos , Pectinas , Materiais Biocompatíveis/química
2.
Sci Rep ; 13(1): 18315, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880216

RESUMO

Silicon (Si) and/or proline (Pro) are natural supplements that are considered to induce plants' stress tolerance against various abiotic stresses. Sweet corn (Zea mays L. saccharata) production is severely afflicted by salinity stress. Therefore, two field tests were conducted to evaluate the potential effects of Si and/or Pro (6mM) used as seed soaking (SS) and/or foliar spray (FS) on Sweet corn plant growth and yield, physio-biochemical attributes, and antioxidant defense systems grown in a saline (EC = 7.14dS m-1) soil. The Si and/or Pro significantly increased growth and yield, photosynthetic pigments, free proline, total soluble sugars (TSS), K+/Na+ratios, relative water content (RWC), membrane stability index (MSI), α-Tocopherol (α-TOC), Ascorbate (AsA), glutathione (GSH), enzymatic antioxidants activities and other anatomical features as compared to controls. In contrast, electrolytes, such as SS and/or FS under salt stress compared to controls (SS and FS using tap water) were significantly decreased. The best results were obtained when SS was combined with FS via Si or Pro. These alterations are brought about by the exogenous application of Si and/or Pro rendering these elements potentially useful in aiding sweet corn plants to acclimate successfully to saline soil.


Assuntos
Antioxidantes , Zea mays , Antioxidantes/farmacologia , Silício/farmacologia , Prolina/farmacologia , Estresse Salino , Glutationa , Água , Solo/química
3.
Front Plant Sci ; 14: 1144319, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123831

RESUMO

Introduction: Osmoprotectant supplementation can be used as a useful approach to enhance plant stress tolerance. However, the effect of silymarin and clove fruit extract (CFE) on wheat plants grown under cadmium (Cd) stress has not been studied. Methods: Wheat seeds were planted in plastic pots filled with ions-free sand. A ½-strength Hoagland's nutrient solution was used for irrigation. Pots were treated with eight treatments thirteen days after sowing: 1) Control, 2) 0.5 mM silymarin foliar application [silymarin], 3) 2% CFE foliar application [CFE], 4) CFE enriched with silymarin (0.24 g silymarin L-1 of CFE) [CFE-silymarin], 5) Watering wheat seedlings with a nutritious solution of 2 mM Cd [Cd]. 6) Cadmium + silymarin, 7) Cadmium + CFE, and 8) Cadmium + CFE-silymarin. The experimental design was a completely randomized design with nine replicates. Results and discussion: The Cd stress decreased grain yield, shoot dry weight, leaf area, carotenoids, chlorophylls, stomatal conductance, net photosynthetic rate, transpiration rate, membrane stability index, nitrogen, phosphorus, and potassium content by 66.9, 60.6, 56.7, 23.8, 33.5, 48.1, 41.2, 48.7, 42.5, 24.1, 39.9, and 24.1%, respectively. On the other hand, Cd has an Application of CFE, silymarin, or CEF-silymarin for wheat plants grown under Cd stress, significantly improved all investigated biochemical, morphological, and physiological variables and enhanced the antioxidant enzyme activities. Applying CFE and/or silymarin enhanced plant tolerance to Cd stress more efficiently. Our findings suggest using CFE-silymarin as a meaningful biostimulator for wheat plants to increase wheat plants' tolerance to Cd stress via enhancing various metabolic and physiological processes.

4.
Gut Microbes ; 13(1): 1-19, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33550882

RESUMO

Betaine is a natural compound present in commonly consumed foods and may have a potential role in the regulation of glucose and lipids metabolism. However, the underlying molecular mechanism of its action remains largely unknown. Here, we show that supplementation with betaine contributes to improved high-fat diet (HFD)-induced gut microbiota dysbiosis and increases anti-obesity strains such as Akkermansia muciniphila, Lactobacillus, and Bifidobacterium. In mice lacking gut microbiota, the functional role of betaine in preventing HFD-induced obesity, metabolic syndrome, and inactivation of brown adipose tissues are significantly reduced. Akkermansia muciniphila is an important regulator of betaine in improving microbiome ecology and increasing strains that produce short-chain fatty acids (SCFAs). Increasing two main members of SCFAs including acetate and butyrate can significantly regulate the levels of DNA methylation at host miR-378a promoter, thus preventing the development of obesity and glucose intolerance. However, these beneficial effects are partially abolished by Yin yang (YY1), a common target gene of the miR-378a family. Taken together, our findings demonstrate that betaine can improve obesity and associated MS via the gut microbiota-derived miR-378a/YY1 regulatory axis, and reveal a novel mechanism by which gut microbiota improve host health.


Assuntos
Fármacos Antiobesidade/farmacologia , Betaína/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , MicroRNAs/genética , Obesidade/prevenção & controle , Animais , Fármacos Antiobesidade/administração & dosagem , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Betaína/administração & dosagem , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Ácidos Graxos Voláteis/metabolismo , Feminino , Síndrome Metabólica/etiologia , Síndrome Metabólica/genética , Síndrome Metabólica/microbiologia , Síndrome Metabólica/prevenção & controle , Camundongos , Obesidade/etiologia , Obesidade/genética , Obesidade/microbiologia , Fator de Transcrição YY1/genética
5.
Plant Cell Physiol ; 60(10): 2231-2242, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31198959

RESUMO

Vegetable oils are mainly stored in the form of triacylglycerol (TAG) in oilseeds. Fatty acids (FAs), one of the building blocks for TAG assembly, are synthesized in plastids and then exported to the endoplasmic reticulum for storage oil synthesis. A recent study demonstrated that the export of FAs from plastids was mediated by a FAX (FA export) family protein. However, the significance of FAs export from plastid during seed oil accumulation has not been investigated. In this study, we found that FAX2 was highly expressed in developing Arabidopsis seeds and the expression level was consistent with FAs synthesis activity. FAX2 mutant seeds showed an approximately 18% reduction of lipid levels compared with wild-type seeds. By contrast, overexpression of FAX2 enhanced seed lipid accumulation by up to 30%. The FAs export activity of FAX2 was confirmed by yeast mutant cell complementation analysis. Our results showed that FAX2 could interact with other proteins to facilitate FAs transport. Taken together, these results indicate that FAX2-mediated FA export from plastids is important for seed oil accumulation, and that FAX2 can be used as a target gene for increasing lipid production in oilseeds.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Proteínas de Membrana/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Transporte Biológico , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana/genética , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plastídeos/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Triglicerídeos/metabolismo
6.
PLoS One ; 13(1): e0190900, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29324770

RESUMO

Under acidic conditions, aluminum (Al) toxicity is an important factor limiting plant productivity; however, the application of phosphorus (P) might alleviate the toxic effects of Al. In this study, seedlings of two vegetatively propagated Eucalyptus clones, E. grandis × E. urophylla 'G9' and E. grandis × E. urophylla 'DH32-29'were subjected to six treatments (two levels of Al stress and three levels of P). Under excessive Al stress, root Al content was higher, whereas shoot and leaf Al contents were lower with P application than those without P application. Further, Al accumulation was higher in the roots, but lower in the shoots and leaves of G9 than in those of DH32-29. The secretion of organic acids was higher under Al stress than under no Al stress. Further, under Al stress, the roots of G9 secreted more organic acids than those of DH32-29. With an increase in P supply, Al-induced secretion of organic acids from roots decreased. Under Al stress, some enzymes, including PEPC, CS, and IDH, played important roles in organic acid biosynthesis and degradation. Thus, our results indicate that P can reduce Al toxicity via the fixation of elemental Al in roots and restriction of its transport to stems and leaves, although P application cannot promote the secretion of organic acid anions. Further, the higher Al-resistance of G9 might be attributed to the higher Al accumulation in and organic acid anion secretion from roots and the lower levels of Al in leaves.


Assuntos
Alumínio/toxicidade , Eucalyptus/efeitos dos fármacos , Eucalyptus/metabolismo , Fósforo/farmacologia , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Substâncias Protetoras/farmacologia , Cloreto de Alumínio , Compostos de Alumínio/farmacologia , Biomassa , Cloretos/farmacologia , Enzimas/metabolismo , Eucalyptus/genética , Fosfatos/administração & dosagem , Fosfatos/farmacologia , Fósforo/administração & dosagem , Folhas de Planta/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Caules de Planta/efeitos dos fármacos , Caules de Planta/metabolismo , Compostos de Potássio/administração & dosagem , Compostos de Potássio/farmacologia , Substâncias Protetoras/administração & dosagem , Distribuição Aleatória , Plântula/efeitos dos fármacos , Plântula/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA