Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 968: 176401, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38331340

RESUMO

Glioblastoma (GBM) is one of the most common intracranial primary malignancies with the highest mortality rate, and there is a lack of effective treatments. In this study, we examined the anti-GBM activity of Tenacissoside H (TH), an active component isolated from the traditional Chinese medicine Marsdenia tenacissima (Roxb.) Wight & Arn (MT), and investigated the potential mechanism. Firstly, we found that TH decreased the viability of GBM cells by inducing cell cycle arrest and apoptosis, and inhibited the migration of GBM cells. Furthermore, combined with the Gene Expression Omnibus database (GEO) and network pharmacology as well as molecular docking, TH was shown to inhibit GBM progression by directly regulating the PI3K/Akt/mTOR pathway, which was further validated in vitro. In addition, the selective PI3K agonist 740 y-p partially restored the inhibitory effects of TH on GBM cells. Finally, TH inhibited GBM progression in an orthotopic transplantation model by inactivating the PI3K/Akt/mTOR pathway in vivo. Conclusively, our results suggest that TH represses GBM progression by inhibiting the PI3K/Akt/mTOR signaling pathway in vitro and in vivo, and provides new insight for the treatment of GBM patients.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Neoplasias Encefálicas/genética , Proliferação de Células
2.
Chin J Integr Med ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37930511

RESUMO

OBJECTIVE: To investigate the therapeutic effect of Sanhuang Xiexin Decoction (SXD) on triple-negative breast cancer (TNBC) in mice and its underlying mechanism. METHODS: The high-performance liquid chromatography (HPLC) was used to quantitate and qualify SXD. A total of 15 female BALB/c mice were inoculated subcutaneously on the right hypogastrium with 3×105 of 4T1-Luc cells to establish TNBC mouse model. All mice were divided randomly into 3 groups, including phosphate buffered solution (PBS), SXD and doxorubicin (DOX) groups (positive drug). Additionally, tumor growth, pathological changes, serum lipid profiles, expression of Janus kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3) signaling pathway and its key targets including inflammatory factors, cell cycle and epithelial-mesenchymal transition (EMT) markers were investigated. Besides, the biosafety of SXD was also evaluated in mice. RESULTS: Rhein, coptisine, berberine hydrochloride and baicalin were all found in SXD, and the concentrations of these 4 components were 0.57, 2.61, 2.93, and 46.04 mg/g, respectively. The mouse experiment showed that SXD could notably suppress the development of tumors and reduce the density of tumor cells (P<0.01). The serum lipid analysis and Oil-Red-O staining both showed the differences, SXD group exhibited higher serum adiponectin and HDL-C levels with lower TC and LDL-C levels compared to the PBS and DOX groups (P<0.05 or P<0.01), respectively. SXD also decreased the levels of phospho-JAK2 (p-JAK2), phospho-STAT3 (p-STAT3) expressions and its downstream factors, including mostly inflammatory cytokine, EMT markers, S phase of tumor cells and vascular endothelial growth factor (VEGF) expression (P<0.05 or P<0.01), respectively. The biosafety assessment of SXD revealed low levels of toxicity in mice. CONCLUSION: SXD could inhibit TNBC by suppressing JAK2-STAT3 phosphorylation which may be associated with modulation of lipid metabolism.

3.
Water Environ Res ; 94(12): e10815, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36514808

RESUMO

In this study, a combined system with simultaneous nitrification, denitrification, and phosphorus removal was operated in continuous low oxygen aeration mode, and the effect of lower oxygen aeration (dissolved oxygen [DO] 0.5-1.5 mg/L) on its performance was examined. The combined system consisted of sludge and high-efficiency biological packing and was operated using four carbon/nitrogen ratios (C/N) with being 10:1, 8:1, 6:1, 10:1. Experimental results showed that the combined system could perform an efficient nitrogen and phosphorus removal under low DO and C/N ratio of 8:1 condition, and removal efficiencies of chemical oxygen demand (COD), NH4 + -N, and PO4 3- -P were 80.01%, 99.03%, and 89.51%, respectively. High-throughput analysis indicated that the functional species of denitrifying bacteria, including Ferruginibacter Azospira, Comamonas, Bacilli, Hyphomicrobium, Thauera, and Comamonadaceae, were important participants in biological nutrient removal. Meanwhile, Acinetobacter was enriched in the combined system, which contributed to phosphorus removal. PRACTITIONER POINTS: A combined system was operated firstly under continuous low oxygen condition. The lower dissolved oxygen (DO) of the combined system was maintained at 0.50-1.5 mg/L level. The combined system could realize simultaneous phosphorus and nitrogen removal under C/N ratio of 8:1. Several functional bacteria were enriched in the coupled systems.


Assuntos
Nitrogênio , Fósforo , Humanos , Desnitrificação , Carbono , Eliminação de Resíduos Líquidos/métodos , Oxigênio , Reatores Biológicos/microbiologia , Nitrificação , Esgotos/microbiologia , Bactérias
4.
J Cell Mol Med ; 26(4): 1060-1070, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34984827

RESUMO

Berberine (BBR), an isoquinoline alkaloid, is used to treat gastrointestinal disorders as an herbal medicine in China. The aim of this study was to investigate the anti-inflammatory activities of BBR in a mouse model with acute graft-versus-host disease (aGVHD). Mice were intravenously injected with bone marrow cells from donors combined with splenocytes to develop aGVHD. The body weight, survival rate and clinical scores were monitored. Then the levels of inflammatory cytokines, histological changes (lung, liver and colon), colonic mucosal barrier and gut microbiota were analysed. Moreover, the toll-like receptor 4 (TLR4)/myeloid differentiation primary response gene 88 (Myd88)/nuclear factor-κB signalling pathway, NLRP3 inflammasome and its cytokines' expressions were determined. The results showed that the gavage of BBR lessened GVHD-induced weight loss, high mortality and clinical scores, inhibited inflammation and target organs damages and prevented GVHD-indued colonic barrier damage. Additionally, BBR modulated gut microbiota, suppressed the activation of the TLR4 signaling pathway and inhibited NLRP3 inflammasome and its cytokine release. This study indicated that BBR might be a potential therapy for aGVHD through NLRP3 inflammasome inhibition.


Assuntos
Berberina , Microbioma Gastrointestinal , Doença Enxerto-Hospedeiro , Animais , Berberina/farmacologia , Berberina/uso terapêutico , Colo/patologia , Doença Enxerto-Hospedeiro/patologia , Inflamassomos/metabolismo , Camundongos , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptor 4 Toll-Like/metabolismo
5.
Chin J Integr Med ; 24(3): 200-206, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28432529

RESUMO

OBJECTIVE: To investigate the potential efficacy of panaxadiol saponins component (PDS-C), a biologically active fraction isolated from total ginsenosides, to reverse chemotherapy-induced myelosuppression and pancytopenia caused by cyclophamide (CTX). METHODS: Mice with myelosuppression induced by CTX were treated with PDS-C at a low- (20 mg/kg), moderate- (40 mg/kg), or high-dose (80 mg/kg) for 7 consecutive days. The level of peripheral white blood cell (WBC), neutrophil (NEU) and platelet (PLT) were measured, the histopathology and colony formation were observed, the protein kinase and transcription factors in hematopoietic cells were determined by immunohistochemical staining and Western blot. RESULTS: In response to PDS-C therapy, the peripheral WBC, NEU and PLT counts of CTX-induced myelosuppressed mice were significantly increased in a dose-dependent manner. Similarly, bone marrow histopathology examination showed reversal of CTX-induced myelosuppression with increase in overall bone marrow cellularity and the number of hematopoietic cells (P<0.01). PDS-C also promoted proliferation of granulocytic and megakaryocyte progenitor cells in CTX-treated mice, as evidenced by significantly increase in colony formation units-granulocytes/monocytes and -megakaryocytes (P<0.01). The enhancement of hematopoiesis by PDS-C appears to be mediated by an intracellular signaling pathway, this was evidenced by the up-regulation of phosphorylated mitogen-activated protein kinase (p-MEK) and extracellular signal-regulated kinases (p-ERK), and receptor tyrosine kinase (C-kit) and globin transcription factor 1 (GATA-1) in hematopoietic cells of CTX-treated mice (P<0.05). CONCLUSIONS: PDS-C possesses hematopoietic growth factor-like activities that promote proliferation and also possibly differentiation of hematopoietic progenitor cells in myelosuppressed mice, probably mediated by a mechanism involving MEK and ERK protein kinases, and C-kit and GATA-1 transcription factors. PDS-C may potentially be a novel treatment of myelosuppression and pancytopenia caused by chemotherapy.


Assuntos
Antineoplásicos/efeitos adversos , Ciclofosfamida/efeitos adversos , Ginsenosídeos/uso terapêutico , Hematopoese/efeitos dos fármacos , Células Mieloides/patologia , Panax/química , Pancitopenia/tratamento farmacológico , Saponinas/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator de Transcrição GATA1/metabolismo , Ginsenosídeos/farmacologia , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Células Mieloides/efeitos dos fármacos , Pancitopenia/induzido quimicamente , Pancitopenia/patologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-kit/metabolismo , Regulação para Cima/efeitos dos fármacos
6.
Chin J Integr Med ; 23(4): 288-294, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28364352

RESUMO

OBJECTIVE: To explore the effects of bufalin on inhibiting proliferation, up-regulating methylation of Wilm' tumor 1 gene (WT1) as well as its possible mechanisms in human erythroid leukemic (HEL) cells. METHODS: The HEL cells were treated with bufalin at various concentrations to observe cellular morphology, proliferation assay and cell cycle. The mRNA and protein expression levels of WT1 were detected by reverse transcription polymerase chain reaction (RT-PCR), Western blot and immunocytochemistry, DNA methylation of WT1 and protein expression levels of DNA methyltransferase 3a (DNMT3a) and DNMT3b were analyzed by methylation-specific PCR, and Western blot respectively. RESULTS: The bufalin was effective to inhibit proliferation of HEL cells in a dose-dependent manner, their suppression rates were from 23.4%±2.1% to 87.2%±5.4% with an half maximal inhibit concentration (IC50) of 0.046 µmol/L. Typical apoptosis morphology was observed in bufalin-treated HEL cells. The proliferation index of cell cycle decreased from 76.4%±1.9% to 49.7%±1.3%. The expression levels of WT1 mRNA and its protein reduced gradually with increasing doses of bufalin, meanwhile, the methylation status of WT1 gene changed from unmethylated into partially or totally methylated. While, the expression levels of DNMT3a and DNMT3b protein gradually increased by bufalin treatment in a dose-dependent manner. CONCLUSIONS: Bufalin can not only significantly inhibit the proliferation of HEL cells and arrest cell cycle at G0/G1 phase, but also induce cellular apoptosis and down-regulate the expression level of WT1. Our results provide the evidence of bufalin for anti-leukemia, its mechanism may involve in increasing WT1 methylation status which is related to the up-regulation of DNMT3a and DNMT3b proteins in erythroid leukemic HEL cells.


Assuntos
Bufanolídeos/farmacologia , Metilação de DNA/efeitos dos fármacos , Leucemia Eritroblástica Aguda/genética , Regulação para Cima/efeitos dos fármacos , Proteínas WT1/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , DNA Metiltransferase 3A , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia Eritroblástica Aguda/enzimologia , Leucemia Eritroblástica Aguda/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima/genética , Proteínas WT1/metabolismo , DNA Metiltransferase 3B
7.
Chin J Integr Med ; 22(12): 910-917, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26712211

RESUMO

OBJECTIVE: To explore the mechanism of the protective effects of Panax notoginseng saponins (PNS) on kidney in diabetic rats. METHODS: Diabetic rat model was obtained by intravenous injection of alloxan, and the rats were divided into model, PNS-100 mg/(kg day) and PNS-200 mg/(kg day) groups, 10 each. Another 10 rats injected with saline were served as control. Periodic acid-Schiff staining and immunological histological chemistry were used to observe histomorphology and tissue expression of bone morphogenetic protein-7 (BMP-7). Silent information regulator 1 (SIRT1) was silenced in rat mesangial cells by RNA interference. The mRNA expressions of SIRT-1, monocyte chemoattractant protein-1 (MCP-1), transforming growth factor ß1 (TGF-ß1) and plasminogen activator inhibitor-1 (PAI-1) were analyzed by reverse transcription polymerase chain reaction. The protein expressions of SIRT1 and the acetylation of nuclear factor κB (NF-κB) P65 were determined by western blotting. The concentration of MCP-1, TGF-ß1 and malondialdehyde (MDA) in culture supernatant were detected by enzyme-linked immuno sorbent assay. The activity of superoxide dismutase (SOD) was detected by the classical method of nitrogen and blue four. RESULTS: In diabetic model rats, PNS could not only reduce blood glucose and lipid (P<0.01), but also increase protein level of BMP-7 and inhibit PAI-1 expression for suppressing fibrosis of the kidney. In rat mesangial cells, PNS could up-regulate the expression of SIRT1 (P<0.01) and in turn suppress the transcription of TGF-ß1 (P<0.05) and MCP-1 (P<0.05). PNS could also reverse the increased acetylation of NF-κB p65 by high glucose. In addition, redox regulation factor MDA was down-regulated (P<0.05) and SOD was up-regulated (P<0.01), which were both induced by SIRT1 up-regulation. CONCLUSIONS: PNS could protect kidney from diabetes with the possible mechanism of up-regulating SIRT1, therefore inhibiting inflammation through decreasing the induction of inflammatory cytokines and TGF-ß1, as well as activating antioxidant proteins.


Assuntos
Antioxidantes/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Rim/patologia , Panax notoginseng/química , Substâncias Protetoras/uso terapêutico , Saponinas/uso terapêutico , Sirtuína 1/genética , Regulação para Cima/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Animais , Glicemia/metabolismo , Proteína Morfogenética Óssea 7/metabolismo , Quimiocina CCL2/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatologia , Técnicas de Silenciamento de Genes , Imuno-Histoquímica , Rim/efeitos dos fármacos , Testes de Função Renal , Lipídeos/sangue , Masculino , Malondialdeído/metabolismo , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Substâncias Protetoras/farmacologia , Ratos Sprague-Dawley , Saponinas/farmacologia , Superóxido Dismutase/metabolismo , Fator de Transcrição RelA/metabolismo , Transcrição Gênica/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA