Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Control Release ; 368: 275-289, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382812

RESUMO

Virus like particles (VLPs) have been well recognized as one of the most important vaccine platforms due to their structural similarity to natural viruses to induce effective humoral and cellular immune responses. Nevertheless, lack of viral nucleic acids in VLPs usually leads the vaccine candidates less efficient in provoking innate immune against viral infection. Here, we constructed a biomimetic dual antigen hybrid influenza nanovaccines THM-HA@Mn with robust immunogenicity via in situ synthesizing a stimulator of interferon genes (STING) agonist Mn3O4 inside the cavity of a recombinant Hepatitis B core antigen VLP (HBc VLP) having fused SpyTag and influenza M2e antigen peptides (Tag-HBc-M2e, THM for short), followed by conjugating a recombinant hemagglutinin (rHA) antigen on the surface of the nanoparticles through SpyTag/SpyCatcher ligating. Such inside Mn3O4 immunostimulator-outside rHA antigen design, together with the chimeric M2e antigen on the HBc skeleton, enabled the synthesized hybrid nanovaccines THM-HA@Mn to well imitate the spatial distribution of M2e/HA antigens and immunostimulant in natural influenza virus. In vitro cellular experiments indicated that compared with the THM-HA antigen without Mn3O4 and a mixture vaccine consisting of THM-HA + MnOx, the THM-HA@Mn hybrid nanovaccines showed the highest efficacies in dendritic cells uptake and in promoting BMDC maturation, as well as inducing expression of TNF-α and type I interferon IFN-ß. The THM-HA@Mn also displayed the most sustained antigen release at the injection site, the highest efficacies in promoting the DC maturation in lymph nodes and germinal center B cells activation in the spleen of the immunized mice. The co-delivery of immunostimulant and antigens enabled the THM-HA@Mn nanovaccines to induce the highest systemic antigen-specific antibody responses and cellular immunogenicity in mice. Together with the excellent colloid dispersion stability, low cytotoxicity, as well as good biosafety, the synthetic hybrid nanovaccines presented in this study offers a promising strategy to design VLP-based vaccine with robust natural and adaptive immunogenicity against emerging viral pathogens.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Vacinas de Partículas Semelhantes a Vírus , Animais , Camundongos , Humanos , Influenza Humana/prevenção & controle , Vacinas de Partículas Semelhantes a Vírus/genética , Imunidade Celular , Adjuvantes Imunológicos , Camundongos Endogâmicos BALB C , Anticorpos Antivirais , Infecções por Orthomyxoviridae/prevenção & controle
2.
Sci Rep ; 11(1): 22362, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34785739

RESUMO

The white-spotted flower chafer (WSFC), Protaetia brevitarsis Lewis, is native to East Asia. Although their larvae are considered a potential resource insect for degrading plant residues, producing protein fodder, and processing to traditional medicine, adult WSFCs inflict damage to dozens of fruit and economic crops. The control of the WSFC still relies heavily on pesticides and the inefficient manual extraction of adults. Here, we report the identification and evaluation of the aggregation pheromone of WSFCs. From the headspace volatiles emitted from WSFC adults, anisole, 4-methylanisole, 2-heptanone and 2-nonanone were identified as WSFC-specific components. However, only anisole and 4-methylanisole elicited positive dose-response relationship in electroantennography tests, and only 4-methylanisole significantly attracted WSFCs of both sexes in olfactometer bioassays and field experiments. These results concluded that 4-methylanisole is the aggregation pheromone of WSFCs. Furthermore, we developed polyethylene vials as long-term dispensers of 4-methylanisole to attract and kill WSFCs. The polyethylene vial lures could effectively attracted WSFCs for more than four weeks. Pheromone-based lures can be developed as an environmentally friendly protocol for monitoring and controlling WSFC adults.


Assuntos
Besouros/fisiologia , Feromônios/metabolismo , Animais , Feminino , Larva/fisiologia , Masculino
3.
Evol Bioinform Online ; 11(Suppl 1): 39-45, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26244005

RESUMO

Veratrilla baillonii Franch is an important Chinese medicinal herb for treating liver-related diseases, which has been over-collected in the recent decades. However, the effective conservation and related population genetic study has been hindered because of the lack of genome sequences and genetic markers in the natural population. We have conducted RNA-seq on V. baillonii. We performed de novo assembly of these data to characterize the V. baillonii transcriptome, resulting in 133,019 contigs with size >200 bp. These contigs were annotated using the NCBI nonredundant database and Gene Ontology (GO) terms. From these contigs, we developed novel microsatellite simple sequence repeat (SSR) markers, identifying a total of 40,885 SSRs. SSRs with repeat motifs of 1-4 bp (mono-, di-, tri-, and tetranucleotides) accounted for 99.8% of all SSRs, with mononucleotide repeats most common, followed by dinucleotide (16.2%) and trinucleotide repeats (14.7%). We selected 151 SSRs for experimental validation, of which 74 were confirmed by polymerase chain reaction. Fourteen SSRs were determined to be polymorphic by screening 40 individuals from six distant populations. The number of alleles per locus ranged from two to four, and the expected heterozygosity varied from 0.2637 to 0.8571, suggesting that these SSR markers are highly polymorphic and effective for further genetic analysis in the nature population. In addition, we explored the genetic structure of V. baillonii using five SSRs in four geographic populations and found that the identified genotypes were clustered into two phylogenetic clades: the Mekong River clade and Jinsha River clade. This result indicates that these two regions may harbor highly divergent genetic lineages and enriched genetic diversity. The de novo transcriptome sequences and new SSR markers discovered by this study provide an initial step for understanding the population genetics of V. baillonii, and a valuable resource for effective conservation management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA