Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Biol Lett ; 27(1): 92, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224534

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is among the most common and malignant cancers with no effective therapeutic approaches. Echinacoside (ECH), a phenylethanoid glycoside isolated from Chinese herbal medicine, Cistanche salsa, can inhibit HCC progression; however, poor absorption and low bioavailability limit its biological applications. METHODS: To improve ECH sensitivity to HepG2 cells, we developed a mesoporous silica nanoparticle (MSN)-based drug delivery system to deliver ECH to HepG2 cells via galactose (GAL) and poly(ethylene glycol) diglycidyl ether (PEGDE) conjugation (ECH@Au@MSN-PEGDE-GAL, or ECH@AMPG). Gain- and loss-of-function assays were conducted to assess the effects of UBR5 on HCC cell apoptosis and glycolysis. Moreover, the interactions among intermediate products were also investigated to elucidate the mechanisms by which UBR5 functions. RESULTS: The present study showed that ubiquitin protein ligase E3 component N-recognin 5 (UBR5) acted as an oncogene in HCC tissues and that its expression was inhibited by ECH. AMPG showed a high drug loading property and a slow and sustained release pattern over time. Moreover, owing to the valid drug accumulation, ECH@AMPG promoted apoptosis and inhibited glycolysis of HepG2 cells in vitro. In vivo experiments demonstrated that AMPG also enhanced the antitumor effects of ECH in HepG2 cell-bearing mice. CONCLUSIONS: Our results indicated the clinical significance of UBR5 as a therapeutic target. On the basis of the nontoxic and high drug-loading capabilities of AMPG, ECH@AMPG presented better effects on HCC cells compared with free ECH, indicating its potential for the chemotherapy of HCC.


Assuntos
Carcinoma Hepatocelular , Medicamentos de Ervas Chinesas , Neoplasias Hepáticas , Ubiquitina-Proteína Ligases/metabolismo , Animais , Carcinoma Hepatocelular/patologia , Preparações de Ação Retardada , Galactose , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Camundongos , Dióxido de Silício
2.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077367

RESUMO

We previously developed chicken interleukin-1ß (IL-1ß) mutants as single-dose adjuvants that induce protective immunity when co-administered with an avian vaccine. However, livestock such as pigs may require a vaccine adjuvant delivery system that provides long-lasting protection to reduce the need for successive booster doses. Therefore, we developed chitosan-coated alginate microparticles as a carrier for bovine serum albumin (BSA) or porcine IL-1ß (pIL-1ß) and assessed their physical, chemical, and biological properties. Electrospraying of the BSA-loaded alginate microparticles (BSA/ALG MPs) resulted in an encapsulation efficiency of 50%, and those MPs were then coated with chitosan (BSA/ALG/CHI MPs). Optical and scanning electron microscopy, zeta potential analysis, and Fourier transform infrared spectroscopy were used to characterize these MPs. The BSA encapsulation parameters were applied to ALG/CHI MPs loaded with pIL-1ß, which were not cytotoxic to porcine fibroblasts but had enhanced bio-activity over unencapsulated pIL-1ß. The chitosan layer of the BSA/ALG/CHI MPs prevented burst release and facilitated sustained release of pIL-1ß for at least 28 days. In conclusion, BSA/ALG/CHI MPs prepared as a carrier for pIL-1ß may be used as an adjuvant for the formulation of pig vaccines.


Assuntos
Quitosana , Vacinas , Alginatos/química , Animais , Quitosana/química , Ácido Glucurônico/química , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/química , Ácidos Hexurônicos/farmacologia , Interleucina-1beta , Soroalbumina Bovina/química , Suínos
3.
Nat Neurosci ; 24(8): 1132-1141, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34168339

RESUMO

Despite notable genetic influences, obesity mainly results from the overconsumption of food, which arises from the interplay of physiological, cognitive and environmental factors. In patients with obesity, eating is determined more by external cues than by internal physiological needs. However, how environmental context drives non-homeostatic feeding is elusive. Here, we identify a population of somatostatin (TNSST) neurons in the mouse hypothalamic tuberal nucleus that are preferentially activated by palatable food. Activation of TNSST neurons enabled a context to drive non-homeostatic feeding in sated mice and required inputs from the subiculum. Pairing a context with palatable food greatly potentiated synaptic transmission between the subiculum and TNSST neurons and drove non-homeostatic feeding that could be selectively suppressed by inhibiting TNSST neurons or the subiculum but not other major orexigenic neurons. These results reveal how palatable food, through a specific hypothalamic circuit, empowers environmental context to drive non-homeostatic feeding.


Assuntos
Comportamento Alimentar/fisiologia , Hipotálamo/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Animais , Sinais (Psicologia) , Masculino , Camundongos , Somatostatina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA