Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(34): 12583-12593, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37590158

RESUMO

Petroleum substances, as archetypical UVCBs (substances of unknown or variable composition, complex reaction products, or biological substances), pose a challenge for chemical risk assessment as they contain hundreds to thousands of individual constituents. It is particularly challenging to determine the biodegradability of petroleum substances since each constituent behaves differently. Testing the whole substance provides an average biodegradation, but it would be effectively impossible to obtain all constituents and test them individually. To overcome this challenge, comprehensive two-dimensional gas chromatography (GC × GC) in combination with advanced data-handling algorithms was applied to track and calculate degradation half-times (DT50s) of individual constituents in two dispersed middle distillate gas oils in seawater. By tracking >1000 peaks (representing ∼53-54% of the total mass across the entire chromatographic area), known biodegradation patterns of oil constituents were confirmed and extended to include many hundreds not currently investigated by traditional one-dimensional GC methods. Approximately 95% of the total tracked peak mass biodegraded after 64 days. By tracking the microbial community evolution, a correlation between the presence of functional microbial communities and the observed progression of DT50s between chemical classes was demonstrated. This approach could be used to screen the persistence of GC × GC-amenable constituents of petroleum substance UVCBs.


Assuntos
Petróleo , Cromatografia Gasosa , Algoritmos , Biodegradação Ambiental , Alimentos
2.
Integr Environ Assess Manag ; 18(6): 1454-1487, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34989108

RESUMO

The evaluation of a chemical substance's persistence is key to understanding its environmental fate, exposure concentration, and, ultimately, environmental risk. Traditional biodegradation test methods were developed many years ago for soluble, nonvolatile, single-constituent test substances, which do not represent the wide range of manufactured chemical substances. In addition, the Organisation for Economic Co-operation and Development (OECD) screening and simulation test methods do not fully reflect the environmental conditions into which substances are released and, therefore, estimates of chemical degradation half-lives can be very uncertain and may misrepresent real environmental processes. In this paper, we address the challenges and limitations facing current test methods and the scientific advances that are helping to both understand and provide solutions to them. Some of these advancements include the following: (1) robust methods that provide a deeper understanding of microbial composition, diversity, and abundance to ensure consistency and/or interpret variability between tests; (2) benchmarking tools and reference substances that aid in persistence evaluations through comparison against substances with well-quantified degradation profiles; (3) analytical methods that allow quantification for parent and metabolites at environmentally relevant concentrations, and inform on test substance bioavailability, biochemical pathways, rates of primary versus overall degradation, and rates of metabolite formation and decay; (4) modeling tools that predict the likelihood of microbial biotransformation, as well as biochemical pathways; and (5) modeling approaches that allow for derivation of more generally applicable biotransformation rate constants, by accounting for physical and/or chemical processes and test system design when evaluating test data. We also identify that, while such advancements could improve the certainty and accuracy of persistence assessments, the mechanisms and processes by which they are translated into regulatory practice and development of new OECD test guidelines need improving and accelerating. Where uncertainty remains, holistic weight of evidence approaches may be required to accurately assess the persistence of chemicals. Integr Environ Assess Manag 2022;18:1454-1487. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Ecotoxicologia , Organização para a Cooperação e Desenvolvimento Econômico , Medição de Risco/métodos , Biodegradação Ambiental
3.
Integr Environ Assess Manag ; 18(4): 868-887, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34730270

RESUMO

Assessing the persistence of chemicals in the environment is a key element in existing regulatory frameworks to protect human health and ecosystems. Persistence in the environment depends on many fate processes, including abiotic and biotic transformations and physical partitioning, which depend on substances' physicochemical properties and environmental conditions. A main challenge in persistence assessment is that existing frameworks rely on simplistic and reductionist evaluation schemes that may lead substances to be falsely assessed as persistent or the other way around-to be falsely assessed as nonpersistent. Those evaluation schemes typically assess persistence against degradation half-lives determined in single-compartment simulation tests or against degradation levels measured in stringent screening tests. Most of the available test methods, however, do not apply to all types of substances, especially substances that are poorly soluble, complex in composition, highly sorptive, or volatile. In addition, the currently applied half-life criteria are derived mainly from a few legacy persistent organic pollutants, which do not represent the large diversity of substances entering the environment. Persistence assessment would undoubtedly benefit from the development of more flexible and holistic evaluation schemes including new concepts and methods. A weight-of-evidence (WoE) approach incorporating multiple influencing factors is needed to account for chemical fate and transformation in the whole environment so as to assess overall persistence. The present paper's aim is to begin to develop an integrated assessment framework that combines multimedia approaches to organize and interpret data using a clear WoE approach to allow for a more consistent, transparent, and thorough assessment of persistence. Integr Environ Assess Manag 2022;18:868-887. © 2021 ExxonMobil Biomedical Sciences, Inc. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Ecotoxicologia , Monitoramento Ambiental , Ecossistema , Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Humanos , Medição de Risco/métodos
4.
Sci Total Environ ; 732: 139293, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32438147

RESUMO

Biodegradation is a major determinant of chemical persistence in the environment and an important consideration for PBT and environmental risk assessments. It is influenced by several environmental factors including temperature and microbial community structure. According to REACH guidance, a temperature correction based on the Arrhenius equation is recommended for chemical persistence data not performed at the recommended EU mean surface water temperature. Such corrections, however, can lead to overly conservative P/vP assessments. In this paper, the relevance of this temperature correction is assessed for petroleum hydrocarbons, using measured surface water (marine and freshwater) degradation half-time (DT50) and degradation half-life (HL) data compiled from relevant literature. Stringent screening criteria were used to specifically select data from biodegradation tests containing indigenous microbes and conducted at temperatures close to their ambient sampling temperature. As a result, ten independent studies were identified, with 993 data points covering 326 hydrocarbon constituents. These data were derived from tests conducted with natural seawater, or freshwater, at temperatures ranging from 5 to 21 °C. Regressions were performed on the full hydrocarbon dataset and on several individual hydrocarbons. The results were compared to the trend as predicted by the Arrhenius equation and using the activation energy (Ea) as recommend in the REACH Guidance. The comparison shows that the correction recommended in REACH Guidance over predicts the effect of temperature on hydrocarbon biodegradation. These results contrast with temperature manipulated inocula where the test temperature is different from the ambient sampling temperature. In these manipulated systems, the effect of temperature follows the Arrhenius equation more closely. In addition, a more striking effect of temperature on the lag phase was observed with longer lag phases more apparent at lower temperatures. This indicates that the effect of temperature may indeed be even lower when considering hydrocarbon biodegradation without the initial lag phase.


Assuntos
Biodegradação Ambiental , Água Doce , Hidrocarbonetos , Petróleo , Água do Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA