Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Shock ; 58(2): 128-136, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35234205

RESUMO

ABSTRACT: Purpose: Sepsis-associated encephalopathy (SAE) induces cognitive dysfunction via mechanisms that commonly involve neuroinflammation. Yin Yang 1 (YY1) is an important transcription factor that acts as a key role in sepsis and neuroepithelium development. However, the function of YY1 in SAE remains unclear. Our study aimed to probe the intrinsic and concrete molecular mechanism of YY1 in SAE. Methods: SAE cell model and SAE animal model were constructed by lipopolysaccharide (LPS) treatment and cecal ligation and puncture surgery, respectively. Behavioral tests were performed to analyze the cognitive function. The polarization state of mouse microglia (BV-2 cells) was assessed by flow cytometry assay. The mRNA and protein expressions were assessed by qRT-PCR and western blot. Finally, the binding relationships between YY1, miR-130a-3p, andTREM-2were verified by dual luciferase reporter gene assay and/or ChIP assay. Results: Here our results described that YY1 and TREM-2 were downregulated and miR-130a-3p was upregulated in SAE. YY1 overexpression could promote M2 polarization of microglia, and alleviate neuroinflammation and behavioral deficits in vitro and in vivo. YY1 could inhibit miR-130a-3p promoter activity. As expected, miR-130a-3p overexpression abolished the effects of YY1 overexpression on LPS-treated BV-2 cells. Besides, TREM-2 was identified as the target of miR-130a-3p. TREM-2 silencing could reverse the effects of miR-130a-3p inhibition on LPS-treated BV-2 cells. Conclusion: Taken together, YY1 promoted microglia M2 polarization via upregulating TREM-2 by interacting with miR-130a-3p promoter, suggesting YY1 overexpression might be a novel therapeutic strategy of SAE.


Assuntos
MicroRNAs , Encefalopatia Associada a Sepse , Animais , Lipopolissacarídeos/farmacologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Microglia/metabolismo , RNA Mensageiro , Fatores de Transcrição
2.
BMC Neurosci ; 18(1): 32, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28288585

RESUMO

BACKGROUND: Ischemic stroke is a major disease that threatens human health in ageing population. Increasing evidence has shown that neuroinflammatory mediators play crucial roles in the pathophysiology of cerebral ischemia injury. Notch signaling is recognized as the cell fate signaling but recent evidence indicates that it may be involved in the inflammatory response in activated microglia in cerebral ischemia. Previous report in our group demonstrated hypertonic saline (HS) could reduce the release of interleukin-1 beta and tumor necrosis factor-alpha in activated microglia, but the underlying molecular and cellular mechanisms have remained uncertain. This study was aimed to explore whether HS would partake in regulating production of proinflammatory mediators through Notch signaling. RESULTS: HS markedly attenuated the expression of Notch-1, NICD, RBP-JK and Hes-1 in activated microglia both in vivo and in vitro. Remarkably, HS also reduced the expression of iNOS in vivo, while the in vitro levels of inflammatory mediators Phos-NF-κB, iNOS and ROS were reduced by HS as well. CONCLUSION: Our results suggest that HS may suppress of inflammatory mediators following ischemia/hypoxic through the Notch signaling which operates synergistically with NF-κB pathway in activated microglia. Our study has provided the morphological and biochemical evidence that HS can attenuate inflammation reaction and can be neuroprotective in cerebral ischemia, thus supporting the use of hypertonic saline by clinicians in patients with an ischemia stroke.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Hipóxia Celular/efeitos dos fármacos , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Receptores Notch/metabolismo , Solução Salina Hipertônica/farmacologia , Animais , Isquemia Encefálica/imunologia , Isquemia Encefálica/patologia , Hipóxia Celular/fisiologia , Linhagem Celular , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Masculino , Camundongos , Microglia/imunologia , Microglia/patologia , Óxido Nítrico Sintase Tipo II/metabolismo , Distribuição Aleatória , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/patologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA