Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Alzheimers Dis ; 85(2): 729-744, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34776447

RESUMO

BACKGROUND: COVID-19 pandemic is a global crisis which results in millions of deaths and causes long-term neurological sequelae, such as Alzheimer's disease (AD). OBJECTIVE: We aimed to explore the interaction between COVID-19 and AD by integrating bioinformatics to find the biomarkers which lead to AD occurrence and development with COVID-19 and provide early intervention. METHODS: The differential expressed genes (DEGs) were found by GSE147507 and GSE132903, respectively. The common genes between COVID-19 and AD were identified. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interactions (PPI) network analysis were carried out. Hub genes were found by cytoscape. A multivariate logistic regression model was constructed. NetworkAnalyst was used for the analysis of TF-gene interactions, TF-miRNA coregulatory network, and Protein-chemical Interactions. RESULTS: Forty common DEGs for AD and COVID-19 were found. GO and KEGG analysis indicated that the DEGs were enriched in the calcium signal pathway and other pathways. A PPI network was constructed, and 5 hub genes were identified (ITPR1, ITPR3, ITPKB, RAPGEF3, MFGE8). Four hub genes (ITPR1, ITPR3, ITPKB, RAPGEF3) which were considered as important factors in the development of AD that were affected by COVID-19 were shown by nomogram. Utilizing NetworkAnalyst, the interaction network of 4 hub genes and TF, miRNA, common AD risk genes, and known compounds is displayed, respectively. CONCLUSION: COVID-19 patients are at high risk of developing AD. Vaccination is required. Four hub genes can be considered as biomarkers for prediction and treatment of AD development caused by COVID-19. Compounds with neuroprotective effects can be used as adjuvant therapy for COVID-19 patients.


Assuntos
Doença de Alzheimer/genética , COVID-19/virologia , Mapas de Interação de Proteínas/genética , SARS-CoV-2/patogenicidade , Doença de Alzheimer/complicações , Doença de Alzheimer/metabolismo , Doença de Alzheimer/virologia , Biologia Computacional/métodos , Bases de Dados Genéticas , Perfilação da Expressão Gênica/métodos , Humanos , SARS-CoV-2/genética
2.
Mol Med Rep ; 5(1): 66-72, 2012 01.
Artigo em Inglês | MEDLINE | ID: mdl-21922142

RESUMO

There is mounting evidence that garlic extracts possess significant anticancer actions. However, no studies have been reported on the effects of aged black garlic extracts (ABGE) on gastric cancer in vitro or in vivo. To examine the potential action of ABGE against gastric cancer, the present study evaluated its effect on the inhibition of cell proliferation and induction of apoptosis in SGC-7901 human gastric cancer cells. Additionally, we performed an in vivo study by inoculating the murine foregastric carcinoma cell line in Kunming mice and treating them with various doses of ABGE (0, 200, 400 and 800 mg/kg, intraperitoneally) for 2 weeks. Dose-dependent apoptosis was detected in ABGE-treated cells in in vitro studies. In tumor-bearing mice, significant antitumor effects of ABGE were observed, such as growth inhibition of inoculated tumors. Further investigation of serum superoxide dismutases, glutathione peroxidase, interleukin-2 and the increased indices of spleen and thymus indicated that the anticancer action of ABGE may be partly due to its antioxidant and immunomodulative effects.


Assuntos
Alho/química , Extratos Vegetais/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Glutationa Peroxidase/sangue , Humanos , Interleucina-2/sangue , Masculino , Camundongos , Neoplasias Gástricas , Superóxido Dismutase/sangue , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA