RESUMO
The relative importance of bottom-up versus top-down effects in aquatic ecosystems remains a longstanding and ongoing controversy. To investigate these effects on phytoplankton communities in freshwater lakes, phytoplankton and zooplankton were sampled, and physical-chemical variables were measured during spring and summer in two important freshwater lakes in northern China: Nansi Lake and Dongping Lake. The redundancy analysis results showed that phytoplankton density and biomass were regulated by physical-chemical variables (bottom-up effects) and predation (top-down effects) together, and the former was more prominent in both lakes. However, the correlation analysis indicated that the top-down effects of zooplankton on phytoplankton were not significant in spring and summer in both lakes, while the bottom-up regulation of physical-chemical variables on phytoplankton had different patterns in the two lakes. In Nansi Lake, the bottom-up effects of physical-chemical variables on phytoplankton were weaker in summer than that in spring due to the abundant nutrients in summer. In Dongping Lake, the bottom-up effects of physical-chemical on phytoplankton were significant both in spring and summer, and the dominant bottom-up control factor shifted from total nitrogen in spring to total phosphorus in summer, with an increased ratio of nitrogen to phosphorus due to changes in limiting factors. In the two studied lakes, with fish culture, the bottom-up effects of phytoplankton on zooplankton were more important than the top-down effects of zooplankton on phytoplankton. These results demonstrate the interactions between phytoplankton and zooplankton and highlight the importance of phytoplankton regulation in freshwater lakes, which has implications for the effective management of freshwater lake ecosystems.
Assuntos
Lagos/química , Fitoplâncton/fisiologia , Animais , Biomassa , Ecossistema , Concentração de Íons de Hidrogênio , Nitrogênio/análise , Fósforo/análise , Estações do Ano , Temperatura , Zooplâncton/fisiologiaRESUMO
The effects of eutrophication on the growth and phenotypic performance of macrophytes have been widely studied. Experimental evidence suggests that an increase in the water nutrient level would promote the performance of several invasive free-floating macrophytes. However, few studies have focused on how a shift in water nutrient (nitrogen and phosphorus) stoichiometric regimes may influence the performance of invasive free-floating macrophytes. In the present study, two exotic invasive plant species, free-floating Eichhornia crassipes and Pistia stratiotes, were subjected to different water nutrient stoichiometric regimes, and their phenotypic performance was studied. We found that the two species converged in several resource use traits and diverged in lateral root length. This implied that their similarities in fitness-correlated traits and their underwater niche differentiation probably contribute to their stable coexistence in the field. Additionally, the eutrophic conditions in the different N:P regimes scarcely altered the performance of both species compared to their performance in the oligotrophic condition. Based on previous studies, we predicted that moderate eutrophication with slight overloading of nitrogen and phosphorus would not improve the performance of several invasive free-floating plants and thus would scarcely alter the invasive status of these species. However, moderate eutrophication may cause other problems, such as the growth of phytoplankton and algae and increased pollution in the water.
Assuntos
Araceae/química , Eichhornia/crescimento & desenvolvimento , Eutrofização/fisiologia , Nitrogênio/análise , Fósforo/análise , Fitoplâncton/química , Poluentes Químicos da Água/análise , China , Eichhornia/química , Espécies Introduzidas , Nitrogênio/química , Nutrientes , Fósforo/química , ÁguaRESUMO
Hydrocarbon-degrading and plant-growth-promoting bacterial endophytes have proven useful for facilitating the phytoremediation of petroleum-contaminated soils with high salinity. In this study, we identified Bacillus safensis strain ZY16 as an endophytic bacterium that can degrade hydrocarbons, produce biosurfactants, tolerate salt, and promote plant growth. The strain was isolated from the root of Chloris virgata Sw., a halotolerant plant collected from the Yellow River Delta. ZY16 survived in Luria-Bertani (LB) broth with 0-16% (w/v) sodium chloride (NaCl) and grew well in LB broth supplemented with 0-8% NaCl, indicating its high salt tolerance. The endophytic strain ZY16 effectively degraded C12-C32 n-alkanes of diesel oil effectively, as well as common polycyclic aromatic hydrocarbons under hypersaline conditions. For example, in mineral salts (MS) liquid medium supplemented with 6% NaCl, ZY16 degraded n-undecane, n-hexadecane, n-octacosane, naphthalene, phenanthrene, and pyrene, with degradation percentages of 94.5, 98.2, 64.8, 72.1, 59.4, and 27.6%, respectively. In addition, ZY16 produced biosurfactant, as confirmed by the oil spreading technique, surface tension detection, and emulsification of para-xylene and paraffin. The biosurfactant production ability of ZY16 under hypersaline conditions was also determined. Moreover, ZY16 showed plant-growth-promoting attributes, such as siderophore and indole-3-acetic acid production, as well as phosphate solubilization. To assess the enhanced phytoremediation of saline soils polluted by hydrocarbons and the plant-growth-promotion ability of ZY16, a pot trial with and without inoculation of the endophyte was designed and performed. Inoculated and non-inoculated plantlets of C. virgata Sw. were grown in oil-polluted saline soil, with oil and salt contents of 10462 mg/kg and 0.51%, respectively. After 120 days of growth, significant enhancement of both the aerial and underground biomass of ZY16-inoculated plants was observed. The soil total petroleum hydrocarbon degradation percentage (a metric of phytoremediation) after incubation with ZY16 was 63.2%, representing an elevation of 25.7% over phytoremediation without ZY16 inoculation. Our study should promote the application of endophytic B. safensis ZY16 in phytoremediation by extending our understanding of the mutualistic interactions between endophytes and their host plants.
RESUMO
Plant responses to drought and their subsequent rehydration can provide evidence for forest dynamics within the context of climate change. In this study, the seedlings of two native species (Vitex negundo var. heterophylla, Quercus acutissima) and two exotic species (Robinia pseudoacacia, Amorpha fruticosa) to China were selected in a greenhouse experiment. The gas exchange, stem hydraulic parameters, plant osmoprotectant contents and antioxidant activities of the seedlings that were subjected to sustained drought and rehydration (test group) as well as those of well-irrigated seedlings (control group) were measured. The two native species exhibited a greater degree of isohydry with drought because they limited the stomatal opening timely from the onset of the drought. However, the two exotic species showed a more 'water spender'-like strategy with R. pseudoacacia showing anisohydric responses and A. fruticosa showing isohydrodynamic responses to drought. Severe drought significantly decreased the leaf gas exchange rates and hydraulic properties, whereas the instantaneous water use efficiency and osmoprotectant contents increased markedly. Most of the physiological parameters recovered rapidly after mild drought rehydration, but the water potential and/or supply of nonstructural carbohydrates did not recover after severe drought rehydration. The results demonstrate that the xylem hydraulic conductivity and shoot water potential jointly play a crucial role in the drought recovery of woody plants. In brief, the native species may play a dominant role in the future in warm-temperate forests because they employ a better balance between carbon gain and water loss than the alien species under extreme drought conditions.
Assuntos
Desidratação , Secas , Árvores/fisiologia , Água , China , Fabaceae/fisiologia , Espécies Introduzidas , Quercus/fisiologia , Robinia/fisiologia , Vitex/fisiologiaRESUMO
Nitrogen (N) is an essential macronutrient for plant development and growth, and the deposition of N has increased in recent decades. Legumes that fix N can also provide N for nearby species. However, N in soil inhibits N fixation. We tested the effects of N fertilisation on one N-fixing (Robinia pseudoacacia) and two non-N-fixing (Sophora japonica and Senna surattensis) woody legume species, which were subjected to five different N levels (0, 1.5, 2.9, 5.9 and 11.4 mg N per plant day-1) under greenhouse conditions. The growth of the two non-N-fixing species was promoted by N supply, while that of R. pseudoacacia was unaffected. Among the three species, R. pseudoacacia had the largest specific leaf area and chlorophyll concentration, S. japonica had the largest root-to-shoot ratio and main root-to-lateral root ratio, and S. surattensis had the largest leaf N and phosphorus concentrations. The N-fixing species was mostly unaffected by N supply. The growth, leaf chlorophyll concentration, and leaf number in the non-N-fixing species were promoted by N supply. The N-fixing species showed better growth in low-N environments, while under increased N deposition, its growth was similar to that of the non-N-fixing species.
Assuntos
Fabaceae/efeitos dos fármacos , Fabaceae/crescimento & desenvolvimento , Fixação de Nitrogênio/efeitos dos fármacos , Nitrogênio/farmacologia , Robinia/efeitos dos fármacos , Robinia/crescimento & desenvolvimento , Madeira/efeitos dos fármacos , Madeira/crescimento & desenvolvimento , Ecossistema , Meio Ambiente , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Solo/químicaRESUMO
Suaeda salsa community is a vegetation type in saline-alkali areas. Weed invasion and colonization in S. salsa communities lead to fragmentationsof S. salsa communities. The colonization of invaded weeds in S. salsa communities is related to community succession of saline-alkali zones. The fragmented S. salsa community may be restored if the mechanism of invaded weed colonization in S. salsa communities is clearly elucidated. Thus, we studied the ecological stoichiometric characteristics of soils and plants in a salt marsh to explain the high colonization possibility of invaded weeds in S. salsa communities. In October 2014, soils and plants were collected from Dongfeng Salt Marsh, Jiaozhou Bay, Shandong Province, China. The ratio of Ex-N/Ex-P in soil was less than 13, which suggests a relative nitrogen limitation for the primary production in the zone. The minimum phosphorus content in plants was higher than 1 mg g-1, whereas the maximum nitrogen content in plants was less than 13 mg g-1. These results imply that phosphorus was abundant, whereas nitrogen was deficient in the area. The plants in the salt marsh may be limited by nitrogen. Given the relatively lower nitrogen contents in Cyperus glomeratus, Echinochloa crusgalli, and Aster subulatus than that in S. salsa, these three species exhibited higher competitiveness than S. salsa did when nitrogen was limited in primary production. These weed species may colonize highly in S. salsa communities. Moreover, nitrogen fertilization might be effective to maintain S. salsa community in Dongfeng Salt Marsh, whereas its effects on controlling weeds colonization in S. salsa communities need more studies to verify.
Assuntos
Ecossistema , Plantas Daninhas/metabolismo , Chenopodiaceae/metabolismo , Nitrogênio/análise , Fósforo/análise , Solo/química , Especificidade da Espécie , Áreas AlagadasRESUMO
Functional traits determine the ecological strategies of plants and therefore are widely considered to feature in the success of invasive species. By comparing a widespread exotic invasive species Robinia pseudoacacia L. with a related native one Sophora japonica L., this research aimed to study strategies of R. pseudoacacia for superior performance from the perspective of functional traits. We conducted a greenhouse experiment in which seedlings of R. pseudoacacia and S. japonica were grown separately under a factorial combination of two light regimes and three levels of nitrogen (N) fertilization, including a control and two levels intended to represent ambient and future levels of N deposition in Chinese forests. After 90 days of treatment, performance and functional traits were determined for the two species, the former referred to as the total biomass (TB) that directly affected fitness. Trait plasticity and integration (the pattern and extent of functional covariance among different plant traits) were analyzed and compared. We found that the two species showed significantly different plastic responses to light increase: in the low-light regime, they were similar in performance and functional traits, while in the high-light regime, R. pseudoacacia achieved a significantly higher TB and a suite of divergent but advantageous functional traits versus S. japonica, such as significantly greater photosynthetic capacity and leaf N concentration, and lower carbon-to-N ratio and root-to-shoot ratio, which conferred it the greater performance. Moreover, across the light gradient, R. pseudoacacia showed higher correlations between photosynthetic capacity and other functional traits than S. japonica. In contrast, N deposition showed little impact on our experiment. Our results suggested that across light regimes, three aspects of functional traits contributed to the superior performance of R. pseudoacacia: functional trait divergence, significantly different plasticity of these traits, as well as greater overall trait coordination.
Assuntos
Espécies Introduzidas , Característica Quantitativa Herdável , Robinia/fisiologia , Sophora/fisiologia , Árvores/fisiologia , Biomassa , Luz , Modelos Lineares , Análise de Componente Principal , Robinia/efeitos da radiação , Sophora/efeitos da radiação , Especificidade da Espécie , Árvores/efeitos da radiaçãoRESUMO
The efficient utilization of plant resources is a necessary and important measure for sustainable management of constructed wetlands. Screening bioactive metabolites from wetland plants could reveal potential solutions for the utilization of constructed wetland plant resources. In this study, the constructed wetland macrophyte Nymphoides peltata was screened for constituents with antitumor activity. The secondary metabolites of N. peltata were extracted and separated by MCI gel, silica gel, and Sephadex gel column chromatography. Antitumor tests were then carried out with MTT assay against the human prostate cancer cell PC3 and the human osteosarcoma cell U2OS. The secondary metabolite group with the most significant antitumor activity was further examined, and four constituents were obtained and identified. This study provides a scientific basis for the potential efficient utilization of N. peltata and other constructed wetland plant resources.
Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Magnoliopsida/química , Eliminação de Resíduos Líquidos/métodos , Linhagem Celular Tumoral , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Áreas AlagadasRESUMO
To evaluate contamination caused by petroleum, surface soil samples were collected from both upland and paddy fields along the irrigation canals in the Hunpu wastewater irrigation region in northeast China. N-alkanes, terpanes, steranes, and phospholipid fatty acids (PLFA) in the surface soil samples were analyzed. The aliphatic hydrocarbon concentration was highest in the samples obtained from the upland field near an operational oil well; it was lowest at I-3P where wastewater irrigation promoted the downward movement of hydrocarbons. The Hunpu region was found contaminated by heavy petroleum from oxic lacustrine fresh water or marine deltaic source rocks. Geochemical parameters also indicated significantly heavier contamination and degradation in the upland fields compared with the paddy fields. Principal component analysis based on PLFA showed various microbial communities between petroleum contaminated upland and paddy fields. Gram-negative bacteria indicated by 15:0, 3OH 12:0, and 16:1(9) were significantly higher in the paddy fields, whereas Gram-positive bacteria indicated by i16:0 and 18:1(9)c were significantly higher in the upland fields (p < 0.05). These PLFAs were related to petroleum contamination. Poly-unsaturated PLFA (18:2omega6, 9; indicative of hydrocarbon-degrading bacteria and fungi) was also significantly elevated in the upland fields. This paper recommends more sensitive indicators of contamination and degradation of petroleum in soil. The results also provide guidelines on soil pollution control and remediation in the Hunpu region and other similar regions.